Publications by authors named "Jason L Freeman"

Two new series of phosphonato-substituted bithiophenes, BpP(X)(C4H2S)2H and BpP(X)(C4H2S)2P(X)Bp (Bp = 2,2'-C12H8O2, X = O, S, Se), have been synthesized and characterized using linear absorption and emission spectra, and third-order nonlinear absorption measurements at 430 nm with 27 ps laser pulses. The compounds were synthesized in three steps: (1) reacting lithiated bithiophene with (Et2N)2PCl; (2) reacting the product from the first step with biphenol; and (3) reacting the product from the second step with the appropriate chalcogen. The X-ray crystal structures of two of the compounds, BpP(O)(C4H2S)2P(O)Bp and BpP(Se)(C4H2S)2P(Se)Bp, are reported and show a number of intermolecular π-π interactions.

View Article and Find Full Text PDF

A series of bithiophene derivatives that are either symmetrically disubstituted with two Ph(2)(X)P groups (X = O, S, Se) or monosubstituted with one Ph(2)(X)P group (X = O, S, Se) and an organic functional group (H, CHO, CH(2)OH, CO(2)Me) have been synthesized. The X-ray crystal structures of Ph(2)(Se)P(C(4)H(2)S)(2)P(Se)Ph(2), Ph(2)(O)P(C(4)H(2)S)(2)H, Ph(2)(S)P(C(4)H(2)S)(2)H, and Ph(2)(O)P(C(4)H(2)S)(2)CH(2)OH exhibit very different solid-state structures depending on the type of intermolecular π-π interactions that occur. The compounds have been characterized by electronic absorption and fluorescence studies.

View Article and Find Full Text PDF

Earlier studies of phosphine-substituted terthiophenes have demonstrated that some of these materials exhibit nonlinear absorption at 532 nm. However, this wavelength is significantly removed from the linear absorption maxima of the complexes, suggesting that better nonlinear absorption might be observed at wavelengths closer to the linear absorption maxima. To investigate this possibility, a library of compounds has been prepared either by varying the group attached to the nonbonding pair of electrons on the phosphorus atoms of 5,5''-bis(diphenylphosphino)-2,2':5',2''-terthiophene (PT(3)P), or by introducing additional substituents on the 5''-position of 5-(diphenylphosphino)-2,2':5',2''-terthiophene (PT(3)).

View Article and Find Full Text PDF