We present an efficient method for propagating the time-dependent Kohn-Sham equations in free space, based on the recently introduced Fourier contour deformation (FCD) approach. For potentials which are constant outside a bounded domain, FCD yields a high-order accurate numerical solution of the time-dependent Schrödinger equation directly in free space, without the need for artificial boundary conditions. Of the many existing artificial boundary condition schemes, FCD is most similar to an exact nonlocal transparent boundary condition, but it works directly on Cartesian grids in any dimension, and runs on top of the fast Fourier transform rather than fast algorithms for the application of nonlocal history integral operators.
View Article and Find Full Text PDFBackground: Global biodiversity losses threaten ecosystem services and can impact important functional insurance in a changing world. Microbial diversity and function can become depleted in agricultural systems and attempts to rediversify agricultural soils rely on either targeted microbial introductions or retaining natural lands as biodiversity reservoirs. As many soil functions are provided by a combination of microbial taxa, rather than outsized impacts by single taxa, such functions may benefit more from diverse microbiome additions than additions of individual commercial strains.
View Article and Find Full Text PDFAlthough metal redox reactions in soils can strongly affect carbon mineralization and other important soil processes, little is known about temporal variations in this redox cycling. Recently, potentiostatically poised electrodes (fixed-potential electrodes) have shown promise for measuring the rate of oxidation and reduction at a specific reduction potential in situ in riparian soils. Here for the first time, we used these electrodes in unsaturated soils to explore the fine-scale temporal redox fluctuations of both iron and manganese in response to environmental conditions.
View Article and Find Full Text PDFBackground: While it is known that arbuscular mycorrhizal fungi (AMF) can improve nutrient acquisition and herbivore resistance in crops, the mechanisms by which AMF influence plant defense remain unknown. Plants respond to herbivory with a cascade of gene expression and phytochemical biosynthesis. Given that the production of defensive phytochemicals requires nutrients, a commonly invoked hypothesis is that the improvement to plant defense when grown with AMF is simply due to an increased availability of nutrients.
View Article and Find Full Text PDFCover crops (CCs) can increase soil organic carbon (SOC) sequestration by providing additional OC residues, recruiting beneficial soil microbiota, and improving soil aggregation and structure. The various CC species that belong to distinct plant functional types (PFTs) may differentially impact SOC formation and stabilization. Biogeochemical theory suggests that selection of PFTs with distinct litter quality (C:N ratio) should influence the pathways and magnitude of SOC sequestration.
View Article and Find Full Text PDFMicrobial movement is important for replenishing lost soil microbial biodiversity and driving plant root colonization, particularly in managed agricultural soils, where microbial diversity and composition can be disrupted. Despite abundant survey-type microbiome data in soils, which are obscured by legacy DNA and microbial dormancy, we do not know how active microbial pools are shaped by local soil properties, agricultural management, and at differing spatial scales. To determine how active microbial colonizers are shaped by spatial scale and environmental conditions, we deployed microbial traps (i.
View Article and Find Full Text PDFAgricultural fields in drylands are challenged globally by limited freshwater resources for irrigation and also by elevated soil salinity and sodicity. It is well known that pedogenic carbonate is less soluble than evaporate salts and commonly forms in natural drylands. However, few studies have evaluated how irrigation loads dissolved calcium and bicarbonate to agricultural fields, accelerating formation rates of secondary calcite and simultaneously releasing abiotic CO to the atmosphere.
View Article and Find Full Text PDFSoil fertility in organic agriculture relies on microbial cycling of nutrient inputs from legume cover crops and animal manure. However, large quantities of labile carbon (C) and nitrogen (N) in these amendments may promote the production and emission of nitrous oxide (N O) from soils. Better ecological understanding of the N O emission controls may lead to new management strategies to reduce these emissions.
View Article and Find Full Text PDFPlant-soil feedbacks can mediate aboveground plant-herbivore interactions by impacting plant chemistry. Given that soil legacies and agricultural practices are closely tied, a better understanding of soil legacy cascades and their application in pest management are needed. We tested how cover crop legacies alter resistance to fall armyworm (Spodoptera frugiperda Smith, Lepidoptera: Noctuidae) in maize (Zea mays L.
View Article and Find Full Text PDFNitrogen (N) pollution from N inputs to agricultural soils contributes to widespread eutrophication and global climate change. One period susceptible to N losses is between winter grain harvest in summer and corn planting in spring in a corn (Zea mays L.)-soybean [Glycine max (L.
View Article and Find Full Text PDFGlobally, soils store two to three times as much carbon as currently resides in the atmosphere, and it is critical to understand how soil greenhouse gas (GHG) emissions and uptake will respond to ongoing climate change. In particular, the soil-to-atmosphere CO flux, commonly though imprecisely termed soil respiration (R ), is one of the largest carbon fluxes in the Earth system. An increasing number of high-frequency R measurements (typically, from an automated system with hourly sampling) have been made over the last two decades; an increasing number of methane measurements are being made with such systems as well.
View Article and Find Full Text PDFCover crop mixtures can provide multiple ecosystem services but provisioning of these services is contingent upon the expression of component species in the mixture. From the same seed mixture, cover crop mixture expression varied greatly across farms and we hypothesized that this variation was correlated with soil inorganic nitrogen (N) concentrations and growing degree days. We measured fall and spring biomass of a standard five-species mixture of canola (Brassica napus L.
View Article and Find Full Text PDFCover cropping is proposed to enhance soil microbial diversity and activity, with cover crop type affecting microbial groups in different ways. We compared fungal community compositions of bulk soils differing by cover crop treatment, season, and edaphic properties in the third year of an organic, conventionally tilled rotation of corn-soybean-wheat planted with winter cover crops. We used Illumina amplicon sequencing fungal assemblages to evaluate effects of nine treatments, each replicated four times, consisting of six single winter cover crop species, a three-species mixture, a six-species mixture, and fallow.
View Article and Find Full Text PDFNitrate can be reduced to other N inorganic species via denitrification and incorporated into organic matter by immobilization; however, the effect of biotic/abiotic and redox condition on immobilization and denitrification processes from a single system are not well documented. We hypothesize nitrate (NO3-) transformation pathways leading to the formation of dissolved- and solid-phase organic N are predominantly controlled by abiotic reactions, but the formation of soluble inorganic N species is controlled by redox condition. In this study, organic matter in the form of leaf compost (LC) was spiked with 15NO3- and incubated under oxic/anoxic and biotic/abiotic conditions at pH 6.
View Article and Find Full Text PDFCover crops have the potential to be agricultural nitrogen (N) regulators that reduce leaching through soils and then deliver N to subsequent cash crops. Yet, regulating N in this way has proven difficult because the few cover crop species that are well-studied excel at either reducing N leaching or increasing N supply to cash crops, but they fail to excel at both simultaneously. We hypothesized that mixed species cover crop stands might balance the N fixing and N scavenging capabilities of individual species.
View Article and Find Full Text PDFIncreasing tree density that followed fire exclusion after the 1880s in the southwestern United States may have also altered nutrient cycles and led to a carbon (C) sink that constitutes a significant component of the U.S. C budget.
View Article and Find Full Text PDFNitrogen (N) loss from agriculture impacts ecosystems worldwide. One strategy to mitigate these losses, ecologically based nutrient management (ENM), seeks to recouple carbon (C) and N cycles to reduce environmental losses and supply N to cash crops. However, our capacity to apply ENM is limited by a lack of field-based high-resolution data on N dynamics in actual production contexts.
View Article and Find Full Text PDFFire suppression and changing climate have resulted in increased large wildfire frequency and severity in the western United States, causing carbon cycle impacts. Forest thinning and prescribed burning reduce high-severity fire risk, but require removal of biomass and emissions of carbon from burning. During each fire a fraction of the burning vegetation and soil organic matter is converted into charcoal, a relatively stable carbon form.
View Article and Find Full Text PDFThis lysimeter experiment was designed to investigate the effects of dietary crude protein (CP) concentration on nitrate-N (NO-N) and ammonia (NH) losses from dairy manure applied to soil and manure N used for plant growth. Lactating dairy cows were fed diets with 16.7% CP (HighCP) or 14.
View Article and Find Full Text PDFStand-replacing wildfires are a novel disturbance within ponderosa pine (Pinus ponderosa) forests of the southwestern United States, and they can convert forests to grasslands or shrublands for decades. While most research shows that soil inorganic N pools and fluxes return to pre-fire levels within a few years, we wondered if vegetation conversion (ponderosa pine to bunchgrass) following stand-replacing fires might be accompanied by a long-term shift in N cycling processes. Using a 34-year stand-replacing wildfire chronosequence with paired, adjacent unburned patches, we examined the long-term dynamics of net and gross nitrogen (N) transformations.
View Article and Find Full Text PDFNitrous oxide (NO) emissions are an important component of the greenhouse gas budget for turfgrasses. To estimate NO emissions and global warming potential, the DAYCENT ecosystem model was parameterized and applied to turfgrass ecosystems. The annual cumulative NO emissions predicted by the DAYCENT model were close to the measured emission rates of Kentucky bluegrass ( L.
View Article and Find Full Text PDFRates of nitrogen (N) deposition have increased in arid and semiarid ecosystems, but few studies have examined the impacts of long-term N enrichment on ecological processes in deserts. We conducted a multiyear, nutrient-addition study within 15 Sonoran Desert sites across the rapidly growing metropolitan area of Phoenix, Arizona (USA). We hypothesized that desert plants and soils would be sensitive to N enrichment, but that these effects would vary among functional groups that differ in terms of physiological responsiveness, proximity to surface N sources, and magnitude of carbon (C) or water limitation.
View Article and Find Full Text PDFWe measured plant and soil carbon (C) storage following canopy-replacing wildfires in woodlands of northeastern Spain that include an understory of shrubs dominated by Quercus coccifera and an overstory of Pinus halepensis trees. Established plant succession models predict rapid shrub recovery in these ecosystems, and we build on this model by contrasting shrub succession with long-term C storage in soils, trees, and the whole ecosystem. We used chronosequence and repeated sampling approaches to detect change over time.
View Article and Find Full Text PDF