Background: Maintaining the integrity of arterial elastin is vital for the prevention of abdominal aortic aneurysm (AAA) development. We hypothesized that in vivo stabilization of aortic elastin with pentagalloyl glucose (PGG), an elastin-binding polyphenol, would interfere with AAA development.
Methods And Results: Safety and efficacy of PGG treatment were first tested in vitro using cytotoxicity, elastin stability, and PGG-elastin interaction assays.
Elastin-associated degeneration and calcification are potential causes of long-term failure of glutaraldehyde (Glut) fixed tissue bioprostheses used in cardiovascular surgery. This vulnerability may be attributed to the inability of Glut to cross-link and adequately protect vascular elastin from enzymatic attack. Tannic acid (TA), a poly galloyl glucose (Glc), is compatible with Glut fixation, binds to vascular elastin, improves resistance to degradation and reduces in vivo calcification.
View Article and Find Full Text PDFCalcification of vascular elastin occurs in patients with arteriosclerosis, renal failure, diabetes, and vascular graft implants. We hypothesized that pathological elastin calcification is related to degenerative and osteogenic mechanisms. To test this hypothesis, the temporal expression of genes and proteins associated with elastin degradation and osteogenesis was examined in the rat subdermal calcification model by quantitative real-time reverse transcription-polymerase chain reaction and specific protein assays.
View Article and Find Full Text PDFChemical stabilization resulting in increased resistance to proteolytic degradation is one of the approaches in prevention of post-implantational aneurysm development in decellularized natural vascular scaffolds. Recently, tannic acid (TA) and tannic acid mimicking dendrimers (TAMD) have been suggested as potential stabilization agents for collagen and elastin. The aim of this work was to determine the stabilizing effects of TAMD on decellularized natural scaffolds.
View Article and Find Full Text PDFProgressive degeneration and calcification of glutaraldehyde (Glut) fixed tissues used in cardiovascular surgery restrict their long-term clinical performance. This limited biological stability may be attributable to the inability of Glut to adequately protect certain tissue components such as elastin from enzymatic attack. The aim of our studies was to develop novel tissue-processing techniques targeted specifically at elastin stabilization by using tannic acid (TA), a plant polyphenol capable of protecting elastin from digestion by specific enzymes.
View Article and Find Full Text PDFThe long-term performance of tissue-derived, glutaraldehyde (Glut)-treated cardiovascular implants such as prosthetic heart valves and vascular grafts is limited by the bio-degeneration of tissue components. While collagen is satisfactorily preserved by Glut, elastin is not stabilized and is highly vulnerable to degradation. The aim of our studies was to develop methods for efficient stabilization of elastin and subsequently reduce its vulnerability towards enzymatic degradation.
View Article and Find Full Text PDF