Publications by authors named "Jason Ioannidis"

The chicken has a Z-W sex chromosome system, in which the males are the homogametic sex (ZZ) and the females the heterogametic sex (ZW). The smaller W chromosome is generally considered to be a highly degraded copy of the Z chromosome that retains around 28-30 homologous protein-coding genes' These Z-W homologues are thought to have important, but undefined, roles in development, and here we explore the role of one of these genes, VCP (Valosin Containing Protein) in gonadogenesis. We established RNA expression levels of both Z and W VCP homologues, the levels of VCP protein, and the cellular localization of VCP protein in male and female embryonic gonads during development.

View Article and Find Full Text PDF

In birds, males are the homogametic sex (ZZ) and females the heterogametic sex (ZW). Primary sex determination is thought to depend on a sex chromosome gene dosage mechanism, and the most likely sex determinant is the Z chromosome gene Doublesex and Mab-3-Related Transcription factor 1 (DMRT1). To clarify this issue, we used a CRISPR-Cas9-based monoallelic targeting approach and sterile surrogate hosts to generate birds with targeted mutations in the DMRT1 gene.

View Article and Find Full Text PDF

In birds, the female is heterogametic (ZW) and the male homogametic (ZZ). The small W chromosome comprises only 28 protein coding genes (homologues to Z chromosome counterparts) and a number of repeat regions. Here, we report our analysis of one of these genes, BTF3 (basic transcription factor 3), which exhibits differential expression during gonadogenesis.

View Article and Find Full Text PDF

A number of blood circulating microRNAs (miRNAs) are proven disease biomarkers and have been associated with ageing and longevity in multiple species. However, the role of circulating miRNAs in livestock species has not been fully studied. We hypothesise that plasma miRNA expression profiles are affected by age and genetic background, and associated with health and production traits in dairy cattle.

View Article and Find Full Text PDF

Background: The potential of circulating miRNAs as biomarkers of tissue function, both in health and disease, has been extensively demonstrated in humans. In addition, circulating miRNA biomarkers offer significant potential towards improving the productivity of livestock species, however, such potential has been hampered by the absence of information on the nature and source of circulating miRNA populations in these species. In addition, many miRNAs originally proposed as robust biomarkers of a particular tissue or disease in humans have been later shown not to be tissue specific and thus to actually have limited biomarker utility.

View Article and Find Full Text PDF

The value of circulating microRNAs (miRNAs) as noninvasive biomarkers of human disease has been extensively demonstrated. Significant potential also exists in other species, particularly in relation to control of veterinary diseases and selection/monitoring of production traits in livestock. Although robust protocols have been developed for miRNA profiling of human biofluids, significant optimization may be required before these can be applied to other species.

View Article and Find Full Text PDF

Poor reproductive performance remains a major issue in the dairy industry, with low conception rates having a significant impact on milk production through extended calving intervals. A major limiting factor is the lack of reliable methods for early pregnancy diagnosis. Identification of animals within a herd that fail to conceive within 3 weeks after insemination would allow early re-insemination and shorten calving intervals.

View Article and Find Full Text PDF

Context: Inadequate progesterone production from the corpus luteum is associated with pregnancy loss. Data available in model species suggest important roles of microRNAs (miRNAs) in luteal development and maintenance.

Objective: To comprehensively investigate the involvement of miRNAs during the ovarian follicle-luteal transition.

View Article and Find Full Text PDF

Up to 50% of ovulations go undetected in modern dairy herds due to attenuated oestrus behavior and a lack of high-accuracy methods for detection of fertile oestrus. This significantly reduces overall herd productivity and constitutes a high economic burden to the dairy industry. MicroRNAs (miRNAs) are ubiquitous regulators of gene expression during both health and disease and they have been shown to regulate different reproductive processes.

View Article and Find Full Text PDF

Background: Low fertility remains a leading cause of poor productivity in dairy cattle. In this context, there is significant interest in developing novel tools for accurate early diagnosis of pregnancy. MicroRNAs (miRNAs) are short RNA molecules which are critically involved in regulating gene expression during both health and disease.

View Article and Find Full Text PDF