Evaluating exoskeleton actuation methods and designing an effective controller for these exoskeletons are both challenging and time-consuming tasks. This is largely due to the complicated human-robot interactions, the selection of sensors and actuators, electrical/command connection issues, and communication delays. In this research, a test framework for evaluating a new active-passive shoulder exoskeleton was developed, and a surface electromyography (sEMG)-based human-robot cooperative control method was created to execute the wearer's movement intentions.
View Article and Find Full Text PDFADAMTS12 belongs to the family of metalloproteinases that mediate a communication between specific cell types and play a key role in the regulation of normal tissue development, remodeling, and degradation. Members of this family have been implicated in neurodegenerative and neuroinflammatory, as well as in muscular-skeletal, cardiovascular, respiratory and renal diseases, and cancer. Several metalloproteinases have been associated with schizophrenia.
View Article and Find Full Text PDFWe report a new surface-initiated polymerization strategy that yields superhydrophobic polymethylene (PM) films from initially smooth substrates of gold and silicon. The films are prepared by assembling a vinyl-terminated self-assembled monolayer, followed by exposure of the surface to a 0.1 M solution of borane, and polymerizing from the borane sites upon exposure to a solution of diazomethane at -17 degrees C.
View Article and Find Full Text PDF