Publications by authors named "Jason Hudzik"

Intramolecular catalysis () is the acceleration of a process at one site of a molecule catalyzed by a functional group in the same molecule; an external agent such as a solvent typically facilitates it. Here, we report a general first-principles-based mechanism, which strictly occurs within a single molecule with no coreagent being involved─we call it intramolecular catalytic transfer of hydrogen atoms (). A reactive part of a molecule ( catalyst moiety or agent, represented by -OOH, -COOH, -SH, -CHOH, -HPO, or another bifunctional H-donor/acceptor group) catalyzes an interconversion process, such as keto-enol or amino-imino tautomerization, and cyclization in the same molecule, while being regenerated in the process.

View Article and Find Full Text PDF

Fluorinated carboxylic acids and their radicals are becoming more prevalent in environmental waters and soils as they have been produced and used for numerous commercial applications. Understanding the thermochemical properties of fluorinated carboxylic acids will provide insights into the stability and reaction paths of these molecules in the environment, in body fluids, and in biological and biochemical processes. Structures and thermodynamic properties for over 50 species related to fluorinated carboxylic acids with two and three carbons are determined with density functional computational calculations B3LYP, M06-2X, and MN15 and higher ab initio levels CBS-QB3, CBS-APNO, and G4 of theory.

View Article and Find Full Text PDF

Monolignols are precursor units and primary products of lignin pyrolysis. The currently available global (lumped) and semidetailed kinetic models, however, are lacking the comprehensive decomposition kinetics of these key intermediates in order to advance toward the fundamentally based detailed chemical-kinetic models of biomass pyrolysis. -Coumaryl alcohol (HOPh-CH═CH-CHOH, -CMA) is the simplest of the three basic monolignols containing a typical side-chain double bond and both alkyl and phenolic type OH groups.

View Article and Find Full Text PDF

Lignin is the most complex component of biomass, and development of a detailed chemical kinetic model for biomass pyrolysis mainly relies on the understanding of the lignin decomposition kinetics. -Coumaryl alcohol (-CMA, HOPh-CH═CH-CHOH), the focus of our analysis, is the simplest of the lignin monomers (monolignols) containing a typical side-chain double bond and both alkyl- and phenolic-type OH-groups. In parts I and II of our work (Asatryan, R.

View Article and Find Full Text PDF

Cinnamyl alcohols such as p-coumaryl alcohol ( p-CMA) are lignin models and precursors (monolignols) and the most important primary products of lignin pyrolysis. However, the detection of monomers is not straightforward since they either undergo secondary transformations or repolymerize to contribute to the char formation. Both concerted-molecular and free-radical pathways are involved in these processes.

View Article and Find Full Text PDF

Interest in high-energy substituted furans has been increasing due to their occurrence in biofuel production and their versatility in conversion to other useful products. Methylfurans are the simplest substituted furans and understanding their reaction pathways, thermochemical properties, including intermediate species stability, and chemical kinetics would aid in the study of larger furans. Furan ring C-H bonds have been shown to be extremely strong, approximately 120 kcal mol, due in part to the placement of the oxygen atom and aromatic-like resonance, both within the ring.

View Article and Find Full Text PDF

Reaction pathways are influenced by thermochemical properties, species stability, and chemical kinetics. Understanding these factors allows for an understanding of the reaction paths and formation of intermediate species. Enthalpies of formation (ΔH), entropies (S), heat capacities (C(T)), oxygen-hydrogen (O-H), oxygen-oxygen (O-O), and (R-O) bond dissociation energies (BDEs) are reported for hydroxyl and hydroperoxide substituted furan, methylfuran, and methoxyfuran species.

View Article and Find Full Text PDF

Standard enthalpies of formation (ΔH°f 298) of methyl, ethyl, primary and secondary propyl, and n-butyl radicals are evaluated and used in work reactions to determine internal consistency. They are then used to calculate the enthalpy of formation for the tert-butyl radical. Other thermochemical properties including standard entropies (S°(T)), heat capacities (Cp(T)), and carbon-hydrogen bond dissociation energies (C-H BDEs) are reported for n-pentane, n-heptane, 2-methylhexane, 2,3-dimethylpentane, and several branched higher carbon number alkanes and their radicals.

View Article and Find Full Text PDF

Ketones are a major class of organic chemicals and solvents, which contribute to hydrocarbon sources in the atmosphere, and are important intermediates in the oxidation and combustion of hydrocarbons and biofuels. Their stability, thermochemical properties, and chemical kinetics are important to understanding their reaction paths and their role as intermediates in combustion processes and in atmospheric chemistry. In this study, enthalpies (ΔH°(f 298)), entropies (S°(T)), heat capacities (C(p)°(T)), and internal rotor potentials are reported for 2-butanone, 3-pentanone, 2-pentanone, 3-methyl-2-butanone, and 2-methyl-3-pentanone, and their radicals corresponding to loss of hydrogen atoms.

View Article and Find Full Text PDF

Methoxyfurans are known components in a number of biofuel synthesis processes and their thermochemical properties are important to the stability, reaction paths, and chemical kinetics of these species. Enthalpies (DeltaH degrees (f298)), entropies (S degrees (298)), and heat capacities (C(p)(T)) are reported for 2-methoxyfuran and 3-methoxyfuran, cyclic ethers with possible biofuel implications, and their radicals corresponding to loss of hydrogen atoms. Standard enthalpies of formation are calculated at the B3LYP/6-31G(d,p), B3LYP/6-311G(2d,2p), CBS-QB3, G3MP2B3, and G3 levels of theory with isodesmic reactions to minimize calculation errors.

View Article and Find Full Text PDF