Publications by authors named "Jason Hollister"

The PINK1/Parkin pathway of mitophagy has been implicated in the pathogenesis of Parkinson's disease. In prion diseases, a transmissible neurodegenerative disease caused by the misfolded and infectious prion protein (PrPSc), expression of both PINK1 and Parkin are elevated, suggesting that PINK1/Parkin mediated mitophagy may also play a role in prion pathogenesis. Using mice in which expression of either PINK1 (PINK1KO) or Parkin (ParkinKO) has been ablated, we analyzed the potential role of PINK1 and Parkin in prion pathogenesis.

View Article and Find Full Text PDF

In the human prion disease Creutzfeldt-Jakob disease (CJD), different CJD neuropathological subtypes are defined by the presence in normal prion protein (PrP) of a methionine or valine at residue 129, by the molecular mass of the infectious prion protein PrP, by the pattern of PrP deposition, and by the distribution of spongiform change in the brain. Heterozygous cases of CJD potentially add another layer of complexity to defining CJD subtypes since PrP can have either a methionine (PrP-M129) or valine (PrP-V129) at residue 129. We have recently demonstrated that the relative amount of PrP-M129 versus PrP-V129, i.

View Article and Find Full Text PDF

Prion protein (PrPC) is a protease-sensitive and soluble cell surface glycoprotein expressed in almost all mammalian cell types. PrPSc, a protease-resistant and insoluble form of PrPC, is the causative agent of prion diseases, fatal and transmissible neurogenerative diseases of mammals. Prion infection is initiated via either ingestion or inoculation of PrPSc or when host PrPC stochastically refolds into PrPSc.

View Article and Find Full Text PDF

Cellular prion protein (PrP) is a mammalian glycoprotein which is usually found anchored to the plasma membrane via a glycophosphatidylinositol (GPI) anchor. PrP misfolds to a pathogenic isoform PrP, the causative agent of neurodegenerative prion diseases. The precise function of PrP remains elusive but may depend upon its cellular localization.

View Article and Find Full Text PDF

Prion infections target neurons and lead to neuronal loss. However, the role of non-neuronal cells in the initiation and spread of infection throughout the brain remains unclear despite the fact these cells can also propagate prion infectivity. To evaluate how different brain cells process scrapie prion protein (PrPres) during acute infection, we exposed neuron-enriched and non-neuronal cell cultures from adult hamster brain to fluorescently-labeled purified PrPres and followed the cultures by live cell confocal imaging over time.

View Article and Find Full Text PDF

Protein-protein interactions associated with proteolytic processing and aggregation are integral to normal and pathological aspects of prion protein (PrP) biology. Characterization of these interactions requires the identification of amino acid residues involved. The FlAsH/tetracysteine (FlAsH/TC) tag is a small fluorescent tag amenable to insertion at internal sites in proteins.

View Article and Find Full Text PDF

Foot-and-mouth disease virus (FMDV) VP1 G-H loop contains the major antigenic site. By replacing the sequence upstream of the RGD motif with a FLAG epitope, a marker virus for pathogenesis studies was generated. In cell culture, the recombinant virus containing FLAG (A24-FLAG) exhibited similar plaque phenotypes and growth kinetics to parental virus.

View Article and Find Full Text PDF

Vaccination of domestic animals with chemically inactivated foot-and-mouth disease virus (FMDV) is widely practiced to control FMD. Currently, FMD vaccine manufacturing requires the growth of large volumes of virulent FMDV in biocontainment-level facilities. Here, two marker FMDV vaccine candidates (A(24)LL3D(YR) and A(24)LL3B(PVKV)3D(YR)) featuring the deletion of the leader coding region (L(pro)) and one of the 3B proteins were constructed and evaluated.

View Article and Find Full Text PDF

Mammalian prions are thought to consist of misfolded aggregates (protease-resistant isoform of the prion protein [PrP(res)]) of the cellular prion protein (PrP(C)). Transmissible spongiform encephalopathy (TSE) can be induced in animals inoculated with recombinant PrP (rPrP) amyloid fibrils lacking mammalian posttranslational modifications, but this induction is inefficient in hamsters or transgenic mice overexpressing glycosylphosphatidylinositol (GPI)-anchored PrP(C). Here we show that TSE can be initiated by inoculation of misfolded rPrP into mice that express wild-type (wt) levels of PrP(C) and that synthetic prion strain propagation and selection can be affected by GPI anchoring of the host's PrP(C).

View Article and Find Full Text PDF

FluBlok, a recombinant trivalent hemagglutinin (rHA) vaccine produced in insect cell culture using the baculovirus expression system, provides an attractive alternative to the current egg-based trivalent inactivated influenza vaccine (TIV). Its manufacturing process presents the possibility for safe and expeditious vaccine production. FluBlok contains three times more HA than TIV and does not contain egg-protein or preservatives.

View Article and Find Full Text PDF

Bovine rhinovirus 2 (BRV2), a causative agent of respiratory disease in cattle, is tentatively assigned to the genus Rhinovirus in the family Picornaviridae. A nearly full-length cDNA of the BRV2 genome was cloned and the nucleotide sequence determined. BRV2 possesses a putative leader proteinase, a small 2A protein and a poly(C) tract, which are characteristic of aphthoviruses.

View Article and Find Full Text PDF

Background: We constructed and characterized several new piggyBac vectors to provide transposition of constitutively- or inducibly-expressible heterologous gene pairs. The dual constitutive control element consists of back-to-back copies of a baculovirus immediate early (ie1) promoter separated by a baculovirus enhancer (hr5). The dual inducible control element consists of back-to-back copies of a minimal cytomegalovirus (CMVmin) promoter separated by a synthetic operator (TetO7), which drives transcription in the presence of a mutant transcriptional repressor plus tetracycline.

View Article and Find Full Text PDF

Sf9, a cell line derived from the lepidopteran insect, Spodoptera frugiperda, is widely used as a host for recombinant glycoprotein expression and purification by baculovirus vectors. Previous studies have shown that this cell line has one or more beta-N-acetylglucosaminidase activities that may be involved in the degradation and/or processing of N-glycoprotein glycans. However, these enzymes and their functions remain poorly characterized.

View Article and Find Full Text PDF

We previously described a transgenic insect cell line, Sfbeta4GalT/ST6, that expresses mammalian beta-1,4-galactosyltransferase and alpha2,6-sialyltransferase genes and produces glycoproteins with terminally sialylated N-glycans. The ability of these cells to produce sialylated N-glycans was surprising because insect cells contain only small amounts of sialic acid and no detectable CMP-sialic acid. Thus, it was of interest to investigate potential sources of sialic acids for sialoglycoprotein synthesis by these cells.

View Article and Find Full Text PDF

We have previously engineered transgenic insect cell lines to express mammalian glycosyltransferases and showed that these cells can sialylate N-glycoproteins, despite the fact that they have little intracellular sialic acid and no detectable CMP-sialic acid. In the accompanying study, we presented evidence that these cell lines can salvage sialic acids for de novo glycoprotein sialylation from extracellular sialoglycoproteins, such as fetuin, found in fetal bovine serum. This finding led us to create a new transgenic insect cell line designed to synthesize its own sialic acid and CMP-sialic acid.

View Article and Find Full Text PDF

Insect cells, like other eucaryotic cells, modify many of their proteins by N-glycosylation. However, the endogenous insect cell N-glycan processing machinery generally does not produce complex, terminally sialylated N-glycans such as those found in mammalian systems. This difference in the N-glycan processing pathways of insect cells and higher eucaryotes imposes a significant limitation on their use as hosts for baculovirus-mediated recombinant glycoprotein production.

View Article and Find Full Text PDF