Human-caused global change produces biotic and abiotic conditions that increase the uncertainty and risk of failure of restoration efforts. A focus of managing for resiliency, that is, the ability of the system to respond to disturbance, has the potential to reduce this uncertainty and risk. However, identifying what drives resiliency might depend on how one measures it.
View Article and Find Full Text PDFDispersal of reproductive propagules determines recruitment patterns and connectivity among populations and can influence how populations respond to major disturbance events. Dispersal distributions can depend on propagule release strategies. For instance, the bull kelp, , can release propagules (spores) from two heights in the water column ("bimodal release"): at the water surface, directly from the reproductive tissues (sori) on the kelp's blades, and near the seafloor after the sori abscise and sink through the water column.
View Article and Find Full Text PDFEchinoderms are favored study organisms not only in cell and developmental biology, but also physiology, larval biology, benthic ecology, population biology and paleontology, among other fields. However, many echinoderm embryology labs are not well-equipped to continue to rear the post-embryonic stages that result. This is unfortunate, as such labs are thus unable to address many intriguing biological phenomena, related to their own cell and developmental biology studies, that emerge during larval and juvenile stages.
View Article and Find Full Text PDFSettlement-the generally irreversible transition from a planktonic phase to a benthic phase-is a critical stage in the life history of many shoreline organisms. It is reasonable to expect that larvae are under intense selection pressure to identify appropriate settlement habitat. Several decades of studies have focused mainly on local indicators that larvae use to identify suitable habitat, such as olfactory cues that indicate the presence of conspecifics or a favored food source.
View Article and Find Full Text PDFIn coastal ecosystems, attributes of fluid motion can prompt animal larvae to rise or sink in the water column and to select microhabitats within which they attach and commit to a benthic existence. In echinoid (sea urchin and sand dollar) larvae living along wave-exposed shorelines, intense turbulence characteristic of surf zones can cause individuals to undergo an abrupt life-history shift characterized by precocious entry into competence - the stage at which larvae will settle and complete metamorphosis in response to local cues. However, the mechanistic details of this turbulence-triggered onset of competence remain poorly defined.
View Article and Find Full Text PDFDirectional asymmetry (DA) in body form is a widespread phenomenon in animals and plants alike, and a functional understanding of such asymmetries can offer insights into the ways in which ecology and development interface to drive evolution. Echinoids (sea urchins, sand dollars and their kin) with planktotrophic development have a bilaterally symmetrical feeding pluteus larva that undergoes a dramatic metamorphosis into a pentameral juvenile that enters the benthos at settlement. The earliest stage of this transformation involves a DA: a left-side invagination in mid-stage larvae leads to the formation of the oral field of the juvenile via a directionally asymmetric structure called the echinus rudiment.
View Article and Find Full Text PDFComplex life cycles have evolved independently numerous times in marine animals as well as in disparate algae. Such life histories typically involve a dispersive immature stage followed by settlement and metamorphosis to an adult stage on the sea floor. One commonality among animals exhibiting transitions of this type is that their larvae pass through a 'precompetent' period in which they do not respond to localized settlement cues, before entering a 'competent' period, during which cues can induce settlement.
View Article and Find Full Text PDFSea urchins have been used as experimental organisms for developmental biology for over a century. Yet, as is the case for many other marine invertebrates, understanding the development of the juveniles and adults has lagged far behind that of their embryos and larvae. The reasons for this are, in large part, due to the difficulty of experimentally manipulating juvenile development.
View Article and Find Full Text PDFBackground: The purple sea urchin, Strongylocentrotus purpuratus, has long been the focus of developmental and ecological studies, and its recently-sequenced genome has spawned a diversity of functional genomics approaches. S. purpuratus has an indirect developmental mode with a pluteus larva that transforms after 1-3 months in the plankton into a juvenile urchin.
View Article and Find Full Text PDFMarine invertebrates commonly produce larvae that disperse in ocean waters before settling into adult shoreline habitat. Chemical and other seafloor-associated cues often facilitate this latter transition. However, the range of effectiveness of such cues is limited to small spatial scales, creating challenges for larvae in finding suitable sites at which to settle, especially given that they may be carried many kilometers by currents during their planktonic phase.
View Article and Find Full Text PDFIntegr Comp Biol
December 2006
Metamorphosis is a substantial morphological transition between 2 multicellular phases in an organism's life cycle, often marking the passage from a prereproductive to a reproductive life stage. It generally involves major physiological changes and a shift in habitat and feeding mode, and can be subdivided into an extended phase of substantial morphological change and/or remodeling, and a shorter-term phase (for example, marine invertebrate "settlement," insect "adult eclosion," mushroom fruiting body emergence) where the actual habitat shift occurs. Disparate metamorphic taxa differ substantially with respect to when the habitat shift occurs relative to the timing of the major events of morphogenetic change.
View Article and Find Full Text PDFMetamorphosis in marine invertebrate larvae is a dynamic, environmentally dependent process that integrates ontogeny with habitat selection. The capacity of many marine invertebrate larvae to survive and maintain metamorphic competence in the absence of environmental cues has been hypothesized to be an adaptive convergence (Hadfield and others 2001). A survey of the literature reveals that a single generalized hypothesis about metamorphic competence as an adaptive convergence is not sufficient to account for interspecific variation in this character.
View Article and Find Full Text PDFCooption and modularity are informative concepts in evolutionary developmental biology. Genes function within complex networks that act as modules in development. These modules can then be coopted in various functional and evolutionary contexts.
View Article and Find Full Text PDFEvolutionary transitions in larval nutritional mode have occurred on numerous occasions independently in many marine invertebrate phyla. Although the evolutionary transition from feeding to nonfeeding development has received considerable attention through both experimental and theoretical studies, mechanisms underlying the change in life history remain poorly understood. Facultative feeding larvae (larvae that can feed but will complete metamorphosis without food) presumably represent an intermediate developmental mode between obligate feeding and nonfeeding.
View Article and Find Full Text PDFRecent work on a diverse array of echinoderm species has demonstrated, as is true in amphibians, that thyroid hormone (TH) accelerates development to metamorphosis. Interestingly, the feeding larvae of several species of sea urchins seem to obtain TH through their diet of planktonic algae (exogenous source), whereas nonfeeding larvae of the sand dollar Peronella japonica produce TH themselves (endogenous source). Here we examine the effects of TH (thyroxine) and a TH synthesis inhibitor (thiourea) on the development of Dendraster excentricus, a sand dollar with a feeding larva.
View Article and Find Full Text PDF