The importance of pre-nucleation cluster stability as the key parameter controlling nucleation of atmospheric airborne ions is well-established. In this Article, large ternary ionic (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(H(2)O)(n) clusters have been studied using Density Functional Theory (DFT) and composite ab initio methods. Twenty classes of clusters have been investigated, and thermochemical properties of common atmospheric (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(0)(H(2)O)(k) and (HSO(4)(-))(H(2)SO(4))(m)(NH(3))(1)(H(2)O)(n) clusters (with m, k, and n up to 3) have been obtained.
View Article and Find Full Text PDFHydration directly affects the mobility, thermodynamic properties, lifetime and nucleation rates of atmospheric ions. In the present study, the role of ammonia on the formation of hydrogen bonded complexes of the common atmospheric hydrogensulfate (HSO(4) (-)) ion with water has been investigated using the Density Functional Theory (DFT). Our findings rule out the stabilizing effect of ammonia on the formation of negatively charged cluster hydrates and show clearly that the conventional (classical) treatment of ionic clusters as presumably more stable compared to neutrals may not be applicable to pre-nucleation clusters.
View Article and Find Full Text PDFPhys Chem Chem Phys
December 2008
The role of the ion sign in the binary H2SO4-H2O nucleation remains unclear despite significant progress in both theory and instrumentation achieved within the last decade. In order to advance the understanding of ion nucleation phenomena, a quantum-chemical study of binary sulfuric acid-water ionic clusters nucleating in the atmosphere has been carried out. We found a profound sign effect caused by the pronounced difference in the structure and properties of clusters formed over core ions of different sign.
View Article and Find Full Text PDF