Publications by authors named "Jason G. Vogel"

Deadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied.

View Article and Find Full Text PDF

Threats posed by windstorms are an increasing concern to forest managers in the southern United States (US). Studies suggest that the southern US will experience an increase in the occurrence as well as the intensity of windstorms, such as hurricanes, in the future. However, forest managers may have difficulty preparing for this future because there is limited understanding of how windstorms affect the structure and composition of forests over the long term.

View Article and Find Full Text PDF

The pedosphere is the largest terrestrial reservoir of organic carbon, yet soil-carbon variability and its representation in Earth system models is a large source of uncertainty for carbon-cycle science and climate projections. Much of this uncertainty is attributed to local and regional-scale variability, and predicting this variation can be challenging if variable selection is based solely on a priori assumptions due to the scale-dependent nature of environmental determinants. Data mining can optimize predictive modeling by allowing machine-learning algorithms to learn from and discover complex patterns in large datasets that may have otherwise gone unnoticed, thus increasing the potential for knowledge discovery.

View Article and Find Full Text PDF
Article Synopsis
  • Significant drought in Texas led to widespread tree mortality, documenting 6.2% of live trees affected across various ecoregions.
  • Dead trees counted were generally larger than surviving trees, indicating potential shifts in species dominance, particularly in wetter climates.
  • The study highlighted a significant impact on carbon storage, with an estimated redistribution of 24-30 Tg C from living to dead trees.
View Article and Find Full Text PDF

Permafrost soils in boreal and Arctic ecosystems store almost twice as much carbon as is currently present in the atmosphere. Permafrost thaw and the microbial decomposition of previously frozen organic carbon is considered one of the most likely positive climate feedbacks from terrestrial ecosystems to the atmosphere in a warmer world. The rate of carbon release from permafrost soils is highly uncertain, but it is crucial for predicting the strength and timing of this carbon-cycle feedback effect, and thus how important permafrost thaw will be for climate change this century and beyond.

View Article and Find Full Text PDF

Root biomass, net primary production and turnover were studied in aspen, jack pine and black spruce forests in two contrasting climates. The climate of the Southern Study Area (SSA) near Prince Albert, Saskatchewan is warmer and drier in the summer and milder in the winter than the Northern Study Area (NSA) near Thompson, Manitoba, Canada. Ingrowth soil cores and minirhizotrons were used to quantify fine root net primary production (NPPFR).

View Article and Find Full Text PDF