Publications by authors named "Jason G Warren"

Transportation of poultry litter out of nutrient limited watersheds such as the Illinois River basin (eastern Oklahoma) is a logical solution for minimizing phosphorus (P) losses from soils to surface waters. Transportation costs are basedon mass of load and distance transported. This study investigated an alternative litter storage technique designed to promote carbon (C) degradation, thereby concentrating nutrients for the purpose of decreasing transportation costs through decreased mass.

View Article and Find Full Text PDF

Ammonia volatilization from the mineralization of uric acid and urea has a major impact on the poultry industry and the environment. Dry acids are commonly used to reduce ammonia emissions from poultry houses; however, little is known about how acidification affects the litter biologically. The goal of this laboratory incubation was to compare the microbiological and physiochemical effects of dry acid amendments (Al+Clear, Poultry Litter Treatment, Poultry Guard) on poultry litter to an untreated control litter and to specifically correlate uric acid and urea contents of these litters to the microbes responsible for their mineralization.

View Article and Find Full Text PDF

Zeolite minerals are ideal for removing ammonium nitrogen (NH4(+)-N) from animal wastes, leachates, and industrial effluents. The objectives of this study were to compare NH4+ removal and kinetics among several commercially available zeolites under various conditions and determine if calorimetry could provide information regarding kinetics of NH4+ removal. Ammonium sorption onto potassium (K) saturated zeolites was compared using synthetic vs.

View Article and Find Full Text PDF

Microbial mineralization of urea and uric acid in poultry litter results in the production of ammonia, which can lead to decreased poultry performance, malodorous emissions, and loss of poultry litter value as a fertilizer. Despite the fact that this is a microbial process, little is known about how the microbial populations, especially ammonia-producing (ureolytic) organisms in poultry litter, respond to litter amendments such as aluminum sulfate (Al(2)(SO(4))(3).14H(2)O; alum).

View Article and Find Full Text PDF

Poultry litter treatment with alum (Al(2)(SO(4))(3) . 18H(2)O) lowers litter phosphorus (P) solubility and therefore can lower litter P release to runoff after land application. Lower P solubility in litter is generally attributed to aluminum-phosphate complex formation.

View Article and Find Full Text PDF

Field trials were established to compare alum-treated poultry litter (ATPL), normal poultry litter (NPL), and triple superphosphate (TSP) as fertilizer sources for corn (Zea mays L.) when applied at rates based on current litter management strategies in Virginia. Trials were established in the Costal Plain and Piedmont physiographic regions near Painter and Orange, VA, respectively.

View Article and Find Full Text PDF