Publications by authors named "Jason G Toyoda"

Wildfires produce solid residuals that have unique chemical and physical properties compared to unburned materials, which influence their cycling and fate in the natural environment. Visual burn severity assessment is used to evaluate post-fire alterations to the landscape in field-based studies, yet muffle furnace methods are commonly used in laboratory studies to assess molecular scale alterations along a temperature continuum. Here, we examined solid and leachable organic matter characteristics from chars visually characterized as low burn severity that were created either on an open air burn table or from low-temperature muffle furnace burns.

View Article and Find Full Text PDF

Hyporheic zones (HZs)─zones of groundwater-surface water mixing─are hotspots for dissolved organic matter (DOM) and nutrient cycling that can disproportionately impact aquatic ecosystem functions. However, the mechanisms affecting DOM metabolism through space and time in HZs remain poorly understood. To resolve this gap, we investigate a recently proposed theory describing trade-offs between carbon (C) and nitrogen (N) limitations as a key regulator of HZ metabolism.

View Article and Find Full Text PDF

Peatlands are among the largest natural sources of atmospheric methane (CH ) worldwide. Microbial processes play a key role in regulating CH emissions from peatland ecosystems, yet the complex interplay between soil substrates and microbial communities in controlling CH emissions as a function of global change remains unclear. Herein, we performed an integrated analysis of multi-omics data sets to provide a comprehensive understanding of the molecular processes driving changes in greenhouse gas (GHG) emissions in peatland ecosystems with increasing temperature and sulfate deposition in a laboratory incubation study.

View Article and Find Full Text PDF

Exceptionally preserved fossils retain soft tissues and often the biomolecules that were present in an animal during its life. The majority of terrestrial vertebrate fossils are not traditionally considered exceptionally preserved, with fossils falling on a spectrum ranging from very well-preserved to poorly preserved when considering completeness, morphology and the presence of microstructures. Within this variability of anatomical preservation, high-quality macro-scale preservation (e.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores the ectorhizosphere of the Setaria plant, a key species for biofuels, focusing on microbial and molecular differences in three accessions grown in nutrient-poor soil.
  • Researchers observed specific changes in microbial communities, especially in Actinobacteria and Proteobacteria, which suggested differing responses to nutrient availability among the Setaria accessions.
  • Findings also revealed that nutrient addition significantly altered the metabolic profiles of the plants, with increases in nitrogen metabolites and other compounds, providing insights for future plant enhancement and bioengineering in low-nutrient environments.
View Article and Find Full Text PDF

Stream and river systems transport and process substantial amounts of dissolved organic matter (DOM) from terrestrial and aquatic sources to the ocean, with global biogeochemical implications. However, the underlying mechanisms affecting the spatiotemporal organization of DOM composition are under-investigated. To understand the principles governing DOM composition, we leverage the recently proposed synthesis of metacommunity ecology and metabolomics, termed 'meta-metabolome ecology.

View Article and Find Full Text PDF