Botanicals used in dietary supplements industry can have toxicology concerns related to endpoint gaps that cannot be fully resolved by a history of use, or existence of conflicting safety data. However, traditional toxicological studies on botanicals are scientifically and pragmatically challenging due to testing of complex mixtures of constituents, cost, time, and animal usage. Alternatively, we developed an in silico decision-tree approach to address data gaps and inform need for further studies by toxicologically evaluating the chemical composition of botanicals.
View Article and Find Full Text PDFDespite growing popularity in dietary supplements, many medicinal mushrooms have not been evaluated for their safe human consumption using modern techniques. The multifaceted approach described here relies on five key principles to evaluate the safety of non-culinary fungi for human use: (1) identification by sequencing the nuclear ribosomal internal transcribed spacer (ITS) region (commonly referred to as ITS barcoding), (2) screening an extract of each fungal raw material against a database of known fungal metabolites, (3) comparison of these extracts to those prepared from grocery store-bought culinary mushrooms using UHPLCPDA-ELS-HRMS, (4) review of the toxicological and chemical literature for each fungus, and (5) evaluation of data establishing presence in-market. This weight-of-evidence approach was used to evaluate seven fungal raw materials and determine safe human use for each.
View Article and Find Full Text PDFOne challenge in the dietary supplement industry is confirmation of species identity for processed raw materials, i.e. those modified by milling, drying, or extraction, which move through a multilevel supply chain before reaching the finished product.
View Article and Find Full Text PDFThe prolonged seizures of status epilepticus produce chronic arrhythmogenic changes in cardiac function. This study was designed to determine if repeated, self-limiting seizures administered to kindled rats induce similar cardiac dysfunction. Multiple seizures administered to rats following hippocampal kindling resulted in cardiac QT interval prolongation and increased susceptibility to experimental arrhythmias.
View Article and Find Full Text PDFStatus epilepticus (SE) can result in temporary cardiac dysfunction in patients, characterized by reduced ejection fraction, decreased ventricular contractility, and alterations in electrical activity of the heart. Although reversible, the cardiac effects of seizures are acutely life threatening, and may contribute to the delayed mortality following SE. The precise mechanisms mediating acute cardiac dysfunctions are not known.
View Article and Find Full Text PDFLethal cardiac arrhythmias contribute to mortality in a number of pathological conditions. Several parameters obtained from a non-invasive, easily obtained electrocardiogram (ECG) are established, well-validated prognostic indicators of cardiac risk in patients suffering from a number of cardiomyopathies. Increased heart rate, decreased heart rate variability (HRV), and increased duration and variability of cardiac ventricular electrical activity (QT interval) are all indicative of enhanced cardiac risk.
View Article and Find Full Text PDFProlonged seizure activity (status epilepticus; SE) can result in increased susceptibility to lethal ventricular arrhythmias for an extended period of time following seizure termination. SE is accompanied by acute, intense activation of the sympathetic nervous system (SymNS) and results in myocyte myofilament damage, arrhythmogenic alterations in cardiac electrical activity, and increased susceptibility to ventricular arrhythmias. However, the mechanisms mediating the changes in cardiac function, and the specific arrhythmogenic substrate produced during SE are unknown.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2009
Status epilepticus (SE) is a seizure or series of seizures that persist for >30 min and often results in mortality. Death rarely occurs during or immediately following seizure activity, but usually within 30 days. Although ventricular arrhythmias have been implicated in SE-related mortality, the effects of this prolonged seizure activity on the cardiac function and susceptibility to arrhythmias have not been directly investigated.
View Article and Find Full Text PDF