Publications by authors named "Jason G Gillmore"

Our undergraduate research group has long focused on the preparation and investigation of electron-deficient analogs of the perimidinespirohexadienone (PSHD) family of photochromic molecular switches for potential application as "photochromic photooxidants" for gating sensitivity to photoinduced charge transfer. We previously reported the photochemistry of two closely related and more reducible quinazolinespirohexadienones (QSHDs), wherein the naphthalene of the PSHD is replaced with a quinoline. In the present work, we report our investigation of the electrochemistry of these asymmetric QSHDs.

View Article and Find Full Text PDF

Two molecules in which the intensity of shorter-wavelength fluorescence from a strong fluorophore is modulated by longer-wavelength irradiation of an attached merocyanine-spirooxazine reverse photochromic moiety have been synthesized and studied. This unusual fluorescence behavior is the result of quenching of fluorophore fluorescence by the thermally stable, open, zwitterionic form of the spirooxazine, whereas the photogenerated closed, spirocyclic form has no effect on the fluorophore excited state. The population ratio of the closed and open forms of the spirooxazine is controlled by the intensity of the longer-wavelength modulated light.

View Article and Find Full Text PDF

The spirocyclic oxazinoquinolinespirohexadienone (OSHD) "photochromes" are computationally predicted to be an attractive target as electron deficient analogues of the perimidinespirohexadienone (PSHD) photochromes, for eventual application as photochromic photooxidants. We have found the literature method for their preparation unsuitable and present an alternative synthesis. Unfortunately the product of this synthesis is the long wavelength (LW) ring-opened quinonimine isomer of the OSHD.

View Article and Find Full Text PDF

A method for predicting the ground state reduction potentials of organic molecules on the basis of the correlation of computed energy differences between the starting S(0) and one-electron-reduced D(0) species with experimental reduction potentials in acetonitrile has been expanded to cover 3.5 V of potential range and 74 compounds across 6 broad families of molecules. Utilizing the conductor-like polarizable continuum model of implicit solvent allows a global correlation that is computationally efficient and has improved accuracy, with r(2) > 0.

View Article and Find Full Text PDF

A simple computational approach for predicting ground-state reduction potentials based upon gas phase geometry optimizations at a moderate level of density functional theory followed by single-point energy calculations at higher levels of theory in the gas phase or with polarizable continuum solvent models is described. Energies of the gas phase optimized geometries of the S0 and one-electron-reduced D0 states of 35 planar aromatic organic molecules spanning three distinct families of organic photooxidants are computed in the gas phase as well as well in implicit solvent with IPCM and CPCM solvent models. Correlation of the D0 - S0 energy difference (essentially an electron affinity) with experimental reduction potentials from the literature (in acetonitrile vs SCE) within a single family, or across families when solvent models are used, yield correlations with r(2) values in excess of 0.

View Article and Find Full Text PDF

A series of peroxyl radical clocks has been developed and calibrated based on the competition between the unimolecular beta-fragmentation (k(beta)) of a peroxyl radical and its bimolecular reaction with a hydrogen atom donor (k(H)). These clocks are based on either methyl linoleate or allylbenzene and were calibrated directly with alpha-tocopherol or methyl linoleate, which have well-established rate constants for reaction with peroxyl radicals (k(H-tocopherol) = 3.5 x 10(6) M(-1) s(-1), k(H-linoleate) = 62 M(-1) s(-1)).

View Article and Find Full Text PDF