Publications by authors named "Jason F Weaver"

The ability to controllably chlorinate metal-oxide surfaces can provide opportunities for designing selective oxidation catalysts. In the present study, we investigated the surface chlorination of IrO2(110) by HCl using temperature programmed reaction spectroscopy (TPRS), x-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculations. We find that exposing IrO2(110) to HCl, followed by heating to 650 K in ultrahigh vacuum, produces nearly equal quantities of on-top and bridging Cl atoms on the surface, Clt and Clbr, where the Clbr atoms replace O-atoms that are removed from the surface by H2O formation.

View Article and Find Full Text PDF

Reaction products in heterogeneous catalysis can be detected either on the catalyst surface or in the gas phase after desorption. However, if atoms are dissolved in the catalyst bulk, then reaction channels can become hidden. This is the case if the dissolution rate of the deposits is faster than their formation rate.

View Article and Find Full Text PDF

The catalytic oxidation of CO and CH can be strongly influenced by the structures of oxide phases that form on metallic catalysts during reaction. Here, we show that an epitaxial PdO(100) structure forms at temperatures above 600 K during the oxidation of Pd(100) by gaseous O atoms as well as exposure to O-rich mixtures at millibar partial pressures. The oxidation of Pd(100) by gaseous O atoms preferentially generates an epitaxial, multilayer PdO(101) structure at 500 K, but initiating Pd(100) oxidation above 600 K causes an epitaxial PdO(100) structure to grow concurrently with PdO(101) and produces a thicker and rougher oxide.

View Article and Find Full Text PDF

The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity.

View Article and Find Full Text PDF
Article Synopsis
  • Rational catalyst design is essential for improving the efficiency and sustainability of catalytic processes, which requires detailed atomic-level understanding of active sites.
  • In the study, it was found that the active catalytic species in a hydrogen-deuterium exchange reaction are small Pd ensembles (1 to 3 Pd atoms) on dilute Pd-in-Au alloy nanoparticles.
  • The research utilizes a combination of catalytic activity measurements, machine learning, and kinetic modeling to show that these small ensembles can be manipulated to enhance catalytic performance by adjusting their size through catalyst pretreatment.
View Article and Find Full Text PDF

Undercoordinated, bridging O-atoms (O) are highly active as H-acceptors in alkane dehydrogenation on IrO(110) surfaces but transform to HOgroups that are inactive toward hydrocarbons. The low C-H activity and high stability of the HOgroups cause the kinetics and product selectivity during CHoxidation on IrO(110) to depend sensitively on the availability of Oatoms prior to the onset of product desorption. From temperature programmed reaction spectroscopy (TPRS) and kinetic simulations, we identified two O-coverage regimes that distinguish the kinetics and product formation during CHoxidation on IrO(110).

View Article and Find Full Text PDF

A single atom Ti-Cu(111) surface alloy can be generated by depositing small amounts of Ti onto Cu(111) at slightly elevated surface temperatures (∼500 to 600 K). Scanning tunneling microscopy shows that small Ti-rich islands covered by a Cu single layer form preferentially on ascending step edges of Cu(111) during Ti deposition below about 400 K but that a Ti-Cu(111) alloy replaces these small islands during deposition between 500 and 600 K, producing an alloy in the brims of the steps. Larger partially Cu-covered Ti-containing islands also form on the Cu(111) terraces at temperatures between 300 and 700 K.

View Article and Find Full Text PDF

ConspectusThe abundance of cheap, natural gas has transformed the energy landscape, whereby revealing new possibilities for sustainable chemical technologies or impacting those that have relied on traditional fossil fuels. The primary component, methane, is underutilized and wastefully exhausted, leading to anthropogenic global warming. Historically, the manipulation of methane remained "," an insurmountable yet rewarding challenge and thus the focus of intense research.

View Article and Find Full Text PDF

We investigated the growth and auto-oxidation of Pd deposited onto a AgOx single-layer on Ag(111) using scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). Palladium initially grows as well-dispersed, single-layer clusters that adopt the same triangular shape and orientation of Agn units in the underlying AgOx layer. Bi-layer clusters preferentially form upon increasing the Pd coverage to ∼0.

View Article and Find Full Text PDF

We used temperature programmed desorption (TPD) and low energy electron diffraction (LEED) to investigate the isomeric structural transformation of a Tb2O3 thin film grown on Pt(111). We find that repeated oxidation and thermal reduction to 1000 K transforms an oxygen-deficient, cubic fluorite (CF) Tb2O3(111) thin film to the well-defined bixbyite, or c-Tb2O3(111) structure, whereas annealing the CF-Tb2O3(111) film in UHV is ineffective in causing this structural transformation. We estimate that the final stabilized film consists of about ten layers of c-Tb2O3(111) in the surface region plus about eight layers of CF-Tb2O3(111) located between the c-Tb2O3(111) and the Pt(111) substrate.

View Article and Find Full Text PDF

We investigated the adsorption and oxidation of n-propane and cyclopropane (C3H8 and c-C3H6) on the IrO2(110) surface using temperature programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. We find that the activation of both C3H8 and c-C3H6 is facile on IrO2(110) at low temperature, and that the dissociated alkanes oxidize during TPRS to produce CO, CO2 and H2O above ∼400 K. Propane conversion to propylene is negligible during TPRS for the conditions studied.

View Article and Find Full Text PDF

Realizing the efficient and selective conversion of ethane to ethylene is important for improving the utilization of hydrocarbon resources, yet remains a major challenge in catalysis. Herein, ethane dehydrogenation on the IrO(110) surface is investigated using temperature-programmed reaction spectroscopy (TPRS) and density functional theory (DFT) calculations. The results show that ethane forms strongly bound σ-complexes on IrO(110) and that a large fraction of the complexes undergo C-H bond cleavage during TPRS at temperatures below 200 K.

View Article and Find Full Text PDF

We used temperature-programmed reaction spectroscopy (TPRS) to investigate the adsorption and oxidation of methanol on stoichiometric and O-rich RuO(110) surfaces. We find that the complete oxidation of CHOH is strongly preferred on stoichiometric RuO(110) during TPRS for initial CHOH coverages below ∼0.33 ML (monolayer), and that partial oxidation to mainly CHO becomes increasingly favored with increasing CHOH coverage from 0.

View Article and Find Full Text PDF

Methane undergoes highly facile C-H bond cleavage on the stoichiometric IrO(110) surface. From temperature-programmed reaction spectroscopy experiments, we found that methane molecularly adsorbed as a strongly bound σ complex on IrO(110) and that a large fraction of the adsorbed complexes underwent C-H bond cleavage at temperatures as low as 150 kelvin (K). The initial dissociation probability of methane on IrO(110) decreased from 80 to 20% with increasing surface temperature from 175 to 300 K.

View Article and Find Full Text PDF

We investigated the molecular adsorption of methane, ethane, propane and n-butane on stoichiometric and oxygen-rich RuO2(110) surfaces using temperature-programmed desorption (TPD) and dispersion-corrected density functional theory (DFT-D3) calculations. We find that each alkane adsorbs strongly on the coordinatively-unsaturated Ru (Rucus) atoms of s-RuO2(110), with desorption from this state producing a well-defined TPD peak at low alkane coverage. As the coverage increases, we find that alkanes first form a compressed layer on the Rucus atoms and subsequently adsorb on the bridging O atoms of the surface until the monolayer saturates.

View Article and Find Full Text PDF

Ultrathin metal oxides exhibit unique chemical properties and show promise for applications in heterogeneous catalysis. Monolayer FeO films supported on metal surfaces show large differences in reactivity depending on the metal substrate, potentially enabling tuning of the catalytic properties of these materials. Nitric oxide (NO) adsorption is facile on silver-supported FeO, whereas a similar film grown on platinum is inert to NO under similar conditions.

View Article and Find Full Text PDF

Achieving selective C-H bond cleavage is critical for developing catalytic processes that transform small alkanes to value-added products. The present study clarifies the molecular-level origin for an exceptionally strong preference for propane to dissociate on the crystalline PdO(101) surface via primary C-H bond cleavage. Using reflection absorption infrared spectroscopy (RAIRS) and density functional theory (DFT) calculations, we show that adsorbed propane σ-complexes preferentially adopt geometries on PdO(101) in which only primary C-H bonds datively interact with the surface Pd atoms at low propane coverages and are thus activated under typical catalytic reaction conditions.

View Article and Find Full Text PDF

We investigated the adsorption and reaction of methanol on continuous and discontinuous films of samarium oxide (SmO) grown on Pt(111) in ultrahigh vacuum. The methanol decomposition was studied by temperature programmed desorption (TPD) and infrared reflection absorption spectroscopy (IRRAS), while structural changes of the oxide surface were monitored by low-energy electron diffraction (LEED). Methanol dehydrogenates to adsorbed methoxy species on both the continuous and discontinuous SmO films, eventually leading to the desorption of CO and H₂ which desorbs at temperatures in the range 400-600 K.

View Article and Find Full Text PDF

Metal oxide films can form on late transition-metal catalysts under sufficiently oxygen-rich conditions, and typically cause significant changes in the catalytic performance of these materials. Several investigations using sensitive in situ surface characterization techniques reveal that the CO oxidation activity of Pd and other late transition-metal catalysts increases abruptly under conditions at which metal oxide structures begin to develop. Findings such as these provide strong motivation for developing atomic-scale descriptions of oxidation catalysis over oxide films of the late transition-metals.

View Article and Find Full Text PDF

Advances in the fundamental understanding of alkane activation on oxide surfaces are essential for developing new catalysts that efficiently and selectively promote chemical transformations of alkanes. In this tutorial review, we discuss the current understanding of alkane activation on crystalline metal oxide surfaces, and focus mainly on summarizing our findings on alkane adsorption and C-H bond cleavage on the PdO(101) surface as determined from model ultrahigh vacuum experiments and theoretical calculations. These studies show that alkanes form strongly-bound σ-complexes on PdO(101) by datively bonding with coordinatively-unsaturated Pd atoms and that these molecularly adsorbed species serve as precursors for C-H bond activation on the oxide surface.

View Article and Find Full Text PDF

We used conventional density functional theory (DFT) and dispersion-corrected DFT (DFT-D3) calculations to investigate C-H bond activation pathways for methane and ethane σ-complexes adsorbed on the PdO(101) surface. The DFT-D3 calculations predict lower and more physically realistic values of the apparent C-H bond cleavage barriers, which are defined relative to the gas-phase energy level, while giving nearly the same energy differences between stationary states as predicted by conventional DFT for a given reaction pathway. For the stable CH4 η(2) complex on PdO(101), DFT-D3 predicts that the C-H bond cleavage barriers are 55.

View Article and Find Full Text PDF

We used temperature programmed reaction spectroscopy (TPRS) and molecular beam reflectivity measurements to investigate the initial dissociation of n-butane isotopologues on PdO(101) and determine kinetic parameters governing the selectivity of initial C-H(D) bond cleavage. We observe differences in the reactivity of the n-butane isotopologues on PdO(101) due to kinetic isotope effects, and find that the initial dissociation probability decreases with increasing surface temperature for each isotopologue. We performed an analysis of the dissociation kinetics using a model that is based on a precursor-mediated mechanism for n-butane dissociation and enables quantification of kinetic parameters for selective C-H bond cleavage by considering differences in the reactivity among the n-butane isotopologues.

View Article and Find Full Text PDF

We used dispersion-corrected density functional theory (DFT-D3) calculations to investigate the initial C-H bond cleavage of propane σ-complexes adsorbed on the PdO(101) surface. The calculations predict that propane molecules adsorbed in η(1) configurations can undergo facile C-H bond cleavage on PdO(101), where the energy barrier for C-H bond activation is lower than that for desorption for each molecular complex. The preferred pathway for propane dissociation on PdO(101) corresponds to cleavage of a primary C-H bond of a so-called staggered p-2η(1) complex which initially coordinates with the surface by forming two H-Pd dative bonds, one at each CH(3) group.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionokvg0ht2cbe568533urura495rvfmncp): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once