Case Description: A 1.5-year-old mixed-breed dog was examined because of a 1-month history of anorexia, vomiting, diarrhea, and weight loss.
Clinical Findings: The dog was very thin on physical examination (body condition score, 3/9).
Objective: To report a case of a woman who presented with parasitic myomas 27 months after laparoscopic myomectomy.
Design: Case report.
Setting: University medical center.
A fiber optic microsphere-based oligonucleotide array is described that employs the sequence of the oligonucleotide probe attached to each microsphere as positional identifiers. Each microsphere serves as an immobilized array feature, functionalized with a unique single-stranded oligonucleotide sequence and randomly distributed into an array of microwells. To determine the sequences attached to individual microspheres, a series of fluorescently labeled combinatorial-pooled oligonucleotide target solutions was designed.
View Article and Find Full Text PDFOptical fibres provide a universal sensing platform as they are easily integrated with a multitude of different sensing schemes. Such schemes enable the preparation of a multitude of sensors from relatively straightforward pH sensors, to more complex ones, including artificial olfaction sensors, high-density oligonucleotide arrays, and high-throughput cell-based arrays. Imaging fibre bundles comprised of thousands of fused optical fibres are the basis for an optically connected, individually addressable parallel sensing platform.
View Article and Find Full Text PDFA high-density fiber optic DNA microarray has been developed consisting of oligonucleotide-functionalized, 3.1-microm-diameter microspheres randomly distributed on the etched face of an imaging fiber bundle. The fiber bundles are comprised of 6000-50000 fused optical fibers and each fiber terminates with an etched well.
View Article and Find Full Text PDFThe detection limit of a fiber-optic microsensor array was investigated for simultaneous detection of multiple DNA sequences. A random array composed of oligonucleotide-functionalized 3.1-microm-diameter microspheres on the distal face of a 500-microm etched imaging fiber was monitored for binding to fluorescently labeled complementary DNA sequences.
View Article and Find Full Text PDF