Publications by authors named "Jason Eades"

Sperm motility analysis of aquatic model species is important yet challenging due to the small sample volume, the necessity to activate with water, and the short duration of motility. To achieve standardization of sperm activation, microfluidic mixers have shown improved reproducibility over activation by hand, but challenges remain in optimizing and simplifying the use of these microdevices for greater adoption. The device described herein incorporates a novel micromixer geometry that aligns two sperm inlet streams with modified herringbone structures that split and recombine the sample at a 1:6 dilution with water to achieve rapid and consistent initiation of motility.

View Article and Find Full Text PDF

Microfluidic impedance cytometry has been demonstrated as an effective platform for single cell analysis, taking advantage of microfabricated features and dielectric cell sensing methods. In this study, we present a simple microfluidic device to improve the sensitivity, accuracy, and throughput of single suspension cell viability analysis using vertical sidewall electrodes fabricated by a widely accessible negative manufacturing method. A microchannel milled through a 75 µm platinum wire, which was embedded into poly-methyl-methacrylate (PMMA), created a pair of parallel vertical sidewall platinum electrodes.

View Article and Find Full Text PDF

Accurate determination of sperm concentration in aquatic species is important for assisted reproduction and cryopreservation, yet is challenging as current counting methods are costly or not suitable for many species. The goal of this work was to develop a simple (single-piece and single-layer photolithography) sperm counting chamber (SSCC) for aquatic species. Goldfish ( and zebrafish () sperm were used for evaluation in the device, which was created with soft lithography.

View Article and Find Full Text PDF

Evaluation of sperm concentration is essential for research and procedures involving AI, cryopreservation and sperm quality assessment. Microfabrication technologies have shown tremendous potential for rapid prototyping and fabrication of devices to assist reproduction and fertility research, but such utility has not yet been made available for most reproduction laboratories. The aim of this study was to evaluate the feasibility of using microfabrication techniques to produce counting chambers for estimation of sperm concentration.

View Article and Find Full Text PDF
Article Synopsis
  • Trimethylaminuria (TMAU) is a genetic disorder where individuals can't metabolize trimethylamine (TMA) due to mutations in the FMO3 gene, leading to a fishy odor because TMA is odoriferous while its oxidized form, TMAO, is not.
  • The study evaluated ten individuals with odor complaints through sensory evaluation, urine analysis after choline ingestion, and whole exome sequencing to understand the genetic basis of TMAU.
  • All subjects had impaired TMAO production, confirming TMAU, and genetic analysis revealed one had a rare FMO3 variant, while others showed common decreased-function variants and novel mutations, suggesting that other genetic factors may also contribute to TMAU.*
View Article and Find Full Text PDF

Background: Individuals with the metabolic disorder trimethylaminuria may sporadically produce malodors despite good hygiene. The psychosocial impact of trimethylaminuria can be considerable. However, trimethylaminuria is difficult to diagnose without specialized tests, in part because odor production is diet-dependent, and malodors may not be present during medical examinations.

View Article and Find Full Text PDF

Introduction: Among other effects, menthol added to cigarettes may modulate sensory response to cigarette smoke either by masking "harshness" or contributing to a desirable "impact." However, harshness and impact have been imprecisely defined and assessed using subjective measures. Thus, the current experiments used an objective measure of sensitivity to chemical irritation in the nose to test the hypothesis that menthol vapor modulates sensitivity to chemical irritation in the airways.

View Article and Find Full Text PDF

Volatile compounds from human breath are a potential source of information for disease diagnosis. Breath may include volatile organic compounds (VOCs) originating in the nasal sinuses. If the sinuses are infected, disease-specific volatiles may enter exhaled air.

View Article and Find Full Text PDF

Humans emit a complex array of volatile and nonvolatile molecules that are influenced by an individual's genetics, health, diet, and stress. Olfaction is the most ancient of our distal senses and may be used to evaluate food and environmental toxins as well as recognize kin and potential predators. Many body odors evolved to be olfactory messengers, which convey information between individuals.

View Article and Find Full Text PDF