Beef raised using rotational grazing practices on biodiverse pastures offers potential benefits to animal and environmental health and can improve the nutrient density of meat to favor human health. However, many cattle producers contend with the seasonal unavailability of fresh forage, necessitating the utilization of supplementary feeds or indoor feeding. The objective of this study was to profile secondary metabolites and fatty acids in grass-finished beef supplemented with different feeds (4.
View Article and Find Full Text PDFGrass-finished beef (GFB) can provide beneficial bioactive compounds to healthy diets, including omega-3 polyunsaturated fatty acids (-3 PUFAs), conjugated linoleic acid (CLA), and secondary bioactive compounds, such as phytochemicals. The objective of this study was to compare fatty acids (FAs), micronutrients, and phytochemicals of beef fed a biodiverse pasture (GRASS), a total mixed ration (GRAIN), or a total mixed ration with 5% grapeseed extract (GRAPE). This was a two-year study involving fifty-four Red Angus steers ( = 54).
View Article and Find Full Text PDFGrass-finished beef (GFB) has demonstrated wide nutritional variations with some GFB having a considerably higher n-6:n-3 ratio compared to grain-finished beef. To better understand these variations, the current study investigated the effects of commonly used supplemental feeds on the nutritional profile of GFB. This two-year study involved 117 steers randomly allocated to one of four diets: (1) grass+hay (G-HAY), (2) grass+baleage (G-BLG), (3) grass+soybean hulls (G-SH), and (4) baleage+soybean hulls in feedlot (BLG-SH).
View Article and Find Full Text PDFCattle diet and breed modify the nutritional profile of beef. The objective of this study was to compare the fatty acid (FA) and micronutrient profiles of Red Angus (RA) and RA x Akaushi (AK) crossbreed steers fed either a grass or grain diet. This two-year study randomly assigned steers to the diets using a 2 × 2 factorial experiment.
View Article and Find Full Text PDFThere is increasing interest in using grass-fed beef (GFB) by-products to augment the nutrient profile of eggs among local pasture-raising systems in the US. The objective of this study was to characterize egg yolk fatty acid and antioxidant profiles using eggs from pasture-raised hens fed a corn- and soy-free diet and supplemented with GFB suet and liver compared to eggs from pasture-raised hens fed a corn and soy layer hen feed and commercially obtained cage-free eggs. The egg yolk vitamin and mineral profile was also assessed by a commercial laboratory.
View Article and Find Full Text PDFGreenhouse gas emissions from the beef industry are largely attributed to the grazing sector, specifically from beef cattle enteric methane emissions. Therefore, the study objective was to examine how forage diversity impacts forage productivity, nutritive value, animal performance, and enteric methane emissions. This study occurred over three consecutive grazing seasons (2018 to 2020) and compared two common Midwest grazing mixtures: 1) a simple, 50:50 alfalfa:orchardgrass mixture (SIMP) and 2) a botanically diverse, cool-season species mixture (COMP).
View Article and Find Full Text PDFIn recent decades, beef cattle producers have selected cattle for biological traits (i.e., improved growth) to maximize revenue, leading to an increase in average cow body size.
View Article and Find Full Text PDFThere is increased consumer interest in grass-finished beef (GFB) with retail sales reaching $272 million in 2016. GFB contains higher omega-3 fatty acid levels compared to grain-finished beef, but variations in fatty acid (FA), mineral, and antioxidant content by producers and season is poorly documented. Hence, GFB samples from cattle finished in both fall and spring were obtained from four producers representing several US sub-regions.
View Article and Find Full Text PDFPLoS One
February 2020
Crossbreeding has been used to improve performance in beef cattle, however the effects of breed composition on methane (CH4) production, yield and intensity from cattle raised in tropical intensive and integrated systems remain unknown. To assess the impact of breed composition on performance and methane emissions, Nellore (NEL; yr 1: BW = 171.5 ± 19.
View Article and Find Full Text PDF