Publications by authors named "Jason E Fish"

To maintain homeostasis in the heart, endothelial cells and cardiomyocytes engage in dynamic cross-talk through paracrine signals that regulate both cardiac development and function. Here, we review the paracrine signals that endothelial cells release to regulate cardiomyocyte growth, hypertrophy and contractility, and the factors that cardiomyocytes release to influence angiogenesis and vascular tone. Dysregulated communication between these cell types can drive pathophysiology of disease, as seen in ischemia-reperfusion injury, diabetes, maladaptive hypertrophy, and chemotherapy-induced cardiotoxicity.

View Article and Find Full Text PDF

The fabrication of complex and stable vasculature in engineered cardiac tissues represents a significant hurdle towards building physiologically relevant models of the heart. Here, we implemented a 3D model of cardiac vasculogenesis, incorporating endothelial cells (EC), stromal cells, and human induced pluripotent stem cell (iPSC)-derived cardiomyocytes (CM) in a fibrin hydrogel. The presence of CMs disrupted vessel formation in 3D tissues, resulting in the upregulation of endothelial activation markers and altered extracellular vesicle (EV) signaling in engineered tissues as determined by the proteomic analysis of culture supernatant.

View Article and Find Full Text PDF

A broad range of brain pathologies critically relies on the vasculature, and cerebrovascular disease is a leading cause of death worldwide. However, the cellular and molecular architecture of the human brain vasculature remains incompletely understood. Here we performed single-cell RNA sequencing analysis of 606,380 freshly isolated endothelial cells, perivascular cells and other tissue-derived cells from 117 samples, from 68 human fetuses and adult patients to construct a molecular atlas of the developing fetal, adult control and diseased human brain vasculature.

View Article and Find Full Text PDF

Carotid atherosclerosis is orchestrated by cell-cell communication that drives progression along a clinical continuum (asymptomatic to symptomatic). Extracellular vesicles (EVs) are cell-derived nanoparticles representing a new paradigm in cellular communication. Little is known about their biological cargo, cellular origin/destination, and functional roles in human atherosclerotic plaque.

View Article and Find Full Text PDF

Brain arteriovenous malformations (bAVMs) are direct connections between arteries and veins that remodel into a complex nidus susceptible to rupture and hemorrhage. Most sporadic bAVMs feature somatic activating mutations within KRAS, and endothelial-specific expression of the constitutively active variant KRASG12D models sporadic bAVM in mice. By leveraging 3D-based micro-CT imaging, we demonstrate that KRASG12D-driven bAVMs arise in stereotypical anatomical locations within the murine brain, which coincide with high endogenous Kras expression.

View Article and Find Full Text PDF

Background: Atrial fibrillation (AF) is a common arrhythmia characterized by uncoordinated atrial electrical activity. Lone AF occurs in the absence of traditional risk factors and is frequently observed in male endurance athletes, who face a 2- to 5-fold higher risk of AF compared with healthy, moderately active males. Our understanding of how endurance exercise contributes to the pathophysiology of lone AF remains limited.

View Article and Find Full Text PDF

Aims/hypothesis: A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier.

Methods: sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier.

View Article and Find Full Text PDF
Article Synopsis
  • - Liver failure can disrupt the Blood CNS Barrier (BCB), leading to damage in the Central Nervous System (CNS), but the exact mechanisms are not yet fully understood.
  • - Researchers developed advanced imaging techniques to study the integrity of the BCB, discovering that specific genetic changes in mice lead to BCB breakdown and subsequent brain damage.
  • - The study highlights a potential protective role of a molecule called HFE2, which could prevent BCB dysfunction and offers insights into treating conditions like multiple sclerosis related to blood-brain barrier issues.
View Article and Find Full Text PDF

Background: Extracellular vesicles (EVs) contain bioactive cargo including miRNAs and proteins that are released by cells during cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels, interfacing with cells in the circulation and vascular wall. It is unknown whether ECs release EVs capable of governing recipient cells within these 2 separate compartments.

View Article and Find Full Text PDF

Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture.

View Article and Find Full Text PDF

Tyrosine kinase inhibitors (TKIs) have revolutionized the management of patients with chronic myelogenous leukemia (CML); however, they may cause cardiovascular (CV) toxicities. In this cross-sectional study, we explored whether high-sensitivity C-reactive protein (hsCRP) and novel markers of vascular dysfunction were associated with exposure to specific TKIs, in 262 CML patients. Hs-CRP level was not associated with CML disease activity or treatment with a specific TKI.

View Article and Find Full Text PDF

Background Many patients have persistent cardiac symptoms after mild COVID-19. However, studies assessing the relationship between symptoms and cardiac imaging are limited. Purpose To assess the relationship between multi-modality cardiac imaging parameters, symptoms, and clinical outcomes in patients recovered from mild COVID-19 compared to COVID-19 negative controls.

View Article and Find Full Text PDF

Rationale: Extracellular vesicles (EVs) contain bioactive cargo including microRNAs (miRNAs) and proteins that are released by cells as a form of cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels and thereby interface with cells in the circulation as well as cells residing in the vascular wall. It is unknown whether ECs have the capacity to release EVs capable of governing recipient cells within two separate compartments, and how this is affected by endothelial activation commonly seen in atheroprone regions.

View Article and Find Full Text PDF

Atypical chemokine receptor-1 (ACKR1), previously known as the Duffy antigen receptor for chemokines, is a widely conserved cell surface protein that is expressed on erythrocytes and the endothelium of post-capillary venules. In addition to being the receptor for the parasite causing malaria, ACKR1 has been postulated to regulate innate immunity by displaying and trafficking chemokines. Intriguingly, a common mutation in its promoter leads to loss of the erythrocyte protein but leaves endothelial expression unaffected.

View Article and Find Full Text PDF

Purpose: To evaluate potential cardiac sequelae of COVID-19 vaccination at 2-month follow-up and relate cardiac symptoms to myocardial tissue changes on fluorodeoxyglucose (FDG) PET/MRI, blood biomarkers, health-related quality of life, and adverse outcomes.

Materials And Methods: In this prospective study (ClinicalTrials.gov: NCT04967807), a convenience sample of individuals aged ≥17 years were enrolled after COVID-19 vaccination and were categorized as symptomatic myocarditis (new cardiac symptoms within 14 days of vaccination and met diagnostic criteria for acute myocarditis), symptomatic no myocarditis (new cardiac symptoms but did not meet criteria for myocarditis), and asymptomatic (no new cardiac symptoms).

View Article and Find Full Text PDF

By providing an ideal environment for healing, biomaterials can be designed to facilitate and encourage wound regeneration. As the wound healing process is complex, there needs to be consideration for the cell types playing major roles, such as fibroblasts. As a major cell type in the dermis, fibroblasts have a large impact on the processes and outcomes of wound healing.

View Article and Find Full Text PDF

Brain arteriovenous malformations (AVMs) are a disorder wherein abnormal, enlarged blood vessels connect arteries directly to veins, without an intervening capillary bed. AVMs are one of the leading causes of hemorrhagic stroke in children and young adults. Most human sporadic brain AVMs are associated with genetic activating mutations in the KRAS gene.

View Article and Find Full Text PDF

Endothelial cells line every blood vessel and thereby serve as an interface between the blood and the vessel wall. They have critical functions for maintaining homeostasis and orchestrating vascular pathogenesis. Atherosclerosis is a chronic disease where cholesterol and inflammatory cells accumulate in the artery wall below the endothelial layer and ultimately form plaques that can either progress to occlude the lumen or rupture with thromboembolic consequences - common outcomes being myocardial infarction and stroke.

View Article and Find Full Text PDF

Background: Endothelial cell (EC) activation, endotheliitis, vascular permeability, and thrombosis have been observed in patients with severe coronavirus disease 2019 (COVID-19), indicating that the vasculature is affected during the acute stages of SARS-CoV-2 infection. It remains unknown whether circulating vascular markers are sufficient to predict clinical outcomes, are unique to COVID-19, and if vascular permeability can be therapeutically targeted.

Methods: Prospectively evaluating the prevalence of circulating inflammatory, cardiac, and EC activation markers as well as developing a microRNA atlas in 241 unvaccinated patients with suspected SARS-CoV-2 infection allowed for prognostic value assessment using a Random Forest model machine learning approach.

View Article and Find Full Text PDF

Background: Type 2 diabetes (T2D) is associated with coronary microvascular dysfunction, which is thought to contribute to compromised diastolic function, ultimately culminating in heart failure with preserved ejection fraction (HFpEF). The molecular mechanisms remain incompletely understood, and no early diagnostics are available. We sought to gain insight into biomarkers and potential mechanisms of microvascular dysfunction in obese mouse (db/db) and lean rat (Goto-Kakizaki) pre-clinical models of T2D-associated diastolic dysfunction.

View Article and Find Full Text PDF

Coronavirus disease 2019 (COVID-19) was primarily identified as a novel disease causing acute respiratory syndrome. However, as the pandemic progressed various cases of secondary organ infection and damage by severe respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported, including a breakdown of the vascular barrier. As SARS-CoV-2 gains access to blood circulation through the lungs, the virus is first encountered by the layer of endothelial cells and immune cells that participate in host defense.

View Article and Find Full Text PDF

Importance: Although myocardial injury can occur with acute COVID-19, there is limited understanding of changes with myocardial metabolism in recovered patients.

Objective: To examine myocardial metabolic changes early after recovery from COVID-19 using fluorodeoxyglucose-positron emission tomography (PET) and associate these changes to abnormalities in cardiac magnetic resonance imaging (MRI)-based function and tissue characterization measures and inflammatory blood markers.

Design, Setting, And Participants: This prospective cohort study took place at a single-center tertiary referral hospital system.

View Article and Find Full Text PDF

Atherosclerosis, the chronic accumulation of cholesterol-rich plaque within arteries, is associated with a broad spectrum of cardiovascular diseases including myocardial infarction, aortic aneurysm, peripheral vascular disease, and stroke. Atherosclerotic cardiovascular disease remains a leading cause of mortality in high-income countries and recent years have witnessed a notable increase in prevalence within low- and middle-income regions of the world. Considering this prominent and evolving global burden, there is a need to identify the cellular mechanisms that underlie the pathogenesis of atherosclerosis to discover novel therapeutic targets for preventing or mitigating its clinical sequelae.

View Article and Find Full Text PDF