Publications by authors named "Jason E Comer"

Eilat (EILV)/chikungunya virus (CHIKV), an insect-based chimeric alphavirus was previously reported to protect mice months after a single dose vaccination. The underlying mechanisms of host protection are not clearly defined. Here, we assessed the capacity of EILV/CHIKV to induce quick and durable protection in cynomolgus macaques.

View Article and Find Full Text PDF

Background: The inflammatory macrophage response contributes to severe Ebola virus disease, with liver and lung injury in humans.

Objective: We sought to further define the activation status of hepatic and pulmonary macrophage populations in Ebola virus disease.

Methods: We compared liver and lung tissue from terminal Ebola virus (EBOV)-infected and uninfected control cynomolgus macaques challenged via the conjunctival route.

View Article and Find Full Text PDF
Article Synopsis
  • Favipiravir, a ribonucleoside analogue, shows promise as a treatment for Ebola Virus Disease (EVD), but mixed results in clinical trials have delayed its regulatory approval.
  • Recent studies in immune competent mouse and guinea pig models found that a dose of 300 mg/kg/day of favipiravir for 8 days effectively prevented lethal EVD-like disease, regardless of the route of administration and dosing schedule.
  • The findings support further development of favipiravir as a potential therapeutic option against EVD, with encouraging preclinical data indicating reduced mortality in guinea pigs after EBOV challenges.
View Article and Find Full Text PDF
Article Synopsis
  • Chikungunya virus (CHIKV) is causing increasing public health concerns, highlighting the need for effective vaccination strategies to prevent its associated symptoms and future outbreaks.
  • Researchers studied a chimeric virus, Eilat (EILV)/CHIKV, which doesn’t replicate in vertebrates but has shown promise in inducing strong protective immunity in mice and now shows effective protection in cynomolgus macaques.
  • The chimeric virus not only provided rapid protection against wild-type CHIKV infection but also triggered robust immune responses with no adverse reactions, suggesting it is a safe and effective vaccine for long-lasting protection.
View Article and Find Full Text PDF

Lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV) share many genetic and biological features including subtle differences between pathogenic and apathogenic strains. Despite remarkable genetic similarity, the viscerotropic WE strain of LCMV causes a fatal LASV fever-like hepatitis in non-human primates (NHPs) while the mouse-adapted Armstrong (ARM) strain of LCMV is deeply attenuated in NHPs and can vaccinate against LCMV-WE challenge. Here, we demonstrate that internalization of WE is more sensitive to the depletion of membrane cholesterol than ARM infection while ARM infection is more reliant on endosomal acidification.

View Article and Find Full Text PDF

Background: The primary route of infection by Ebola virus (EBOV) is through contact of mucosal surfaces. Few studies have explored infection of nonhuman primates (NHPs) via the oral mucosa, which is a probable portal of natural infection in humans.

Methods: To further characterize the pathogenesis of EBOV infection via the oral exposure route, we challenged cohorts of cynomolgus monkeys with low doses of EBOV variant Makona.

View Article and Find Full Text PDF

Background: Highly pathogenic filoviruses such as Ebola virus (EBOV) hold capacity for delivery by artificial aerosols, and thus potential for intentional misuse. Previous studies have shown that high doses of EBOV delivered by small-particle aerosol cause uniform lethality in nonhuman primates (NHPs), whereas only a few small studies have assessed lower doses in NHPs.

Methods: To further characterize the pathogenesis of EBOV infection via small-particle aerosol, we challenged cohorts of cynomolgus monkeys with low doses of EBOV variant Makona, which may help define risks associated with small particle aerosol exposures.

View Article and Find Full Text PDF

(EBOV) causes Ebola virus disease (EVD), a devastating viral hemorrhagic fever in humans. Nonhuman primate (NHP) models of EVD traditionally use intramuscular infection with higher case fatality rates and reduced mean time-to-death compared to contact transmission typical of human cases of EVD. A cynomolgus macaque model of oral and conjunctival EBOV was used to further characterize the more clinically relevant contact transmission of EVD.

View Article and Find Full Text PDF
Article Synopsis
  • Ebola virus (EBOV) primarily spreads through contact with infected body fluids, affecting mucosal surfaces, and previous studies have mostly used lethal routes such as intramuscular injection or aerosol exposure.
  • In new studies with cynomolgus macaques, higher doses of EBOV were lethal while lower doses led to survival in most cases, indicating that natural exposure routes might have different outcomes than previously tested methods.
  • The study found that those exposed to lower doses had delayed onset of disease and showed asymptomatic infections, suggesting potential natural immune barriers that could limit the spread of the virus among survivors.
View Article and Find Full Text PDF

Molnupiravir (EIDD-2801) is a prodrug of a ribonucleoside analogue that is currently being used under a US FDA emergency use authorization for the treatment of mild to moderate COVID-19. We evaluated molnupiravir for efficacy as an oral treatment in the rhesus macaque model of SARS-CoV-2 infection. Twenty non-human primates (NHPs) were challenged with SARS-CoV-2 and treated with 75 mg/kg (n = 8) or 250 mg/kg (n = 8) of molnupiravir twice daily by oral gavage for 7 days.

View Article and Find Full Text PDF

The unprecedented magnitude of the 2013-2016 Ebola virus (EBOV) epidemic in West Africa resulted in over 11 000 deaths and spurred an international public health emergency. A second outbreak in 2018-2020 in DRC resulted in an additional >3400 cases and nearly 2300 deaths (WHO, 2020). These large outbreaks across geographically diverse regions highlight the need for the development of effective oral therapeutic agents that can be easily distributed for self-administration to populations with active disease or at risk of infection.

View Article and Find Full Text PDF
Article Synopsis
  • * A study involving twelve cynomolgus macaques infected with MARV Angola showed that all animals succumbed to the disease within 8 days, demonstrating symptoms similar to human cases such as fever and systemic inflammation.
  • * The research provides crucial data on disease progression and symptoms, aiding in the future design and development of effective medical responses to Marburg virus disease.
View Article and Find Full Text PDF

Currently there is no FDA-licensed vaccine or therapeutic against Sudan ebolavirus (SUDV) infections. The largest ever reported 2014-2016 West Africa outbreak, as well as the 2021 outbreak in the Democratic Republic of Congo, highlight the critical need for countermeasures against filovirus infections. A well-characterized small animal model that is susceptible to wild-type filoviruses would greatly add to the screening of antivirals and vaccines.

View Article and Find Full Text PDF

Filoviruses (Family Filoviridae genera Ebolavirus and Marburgvirus) are negative-stranded RNA viruses that cause severe health effects in humans and non-human primates, including death. Except in outbreak settings, vaccines and other medical countermeasures against Ebola virus (EBOV) will require testing under the FDA Animal Rule. Multiple vaccine candidates have been evaluated using cynomolgus monkeys (CM) exposed to EBOV Kikwit strain.

View Article and Find Full Text PDF
Article Synopsis
  • SC31 is a powerful neutralizing antibody against SARS-CoV-2, developed from a patient who recovered from COVID-19, displaying strong efficacy in various animal models.
  • It works by targeting a specific site on the Spike protein of the virus, reducing viral loads and inflammation in infected mice and hamsters, and achieving undetectable viral levels in rhesus macaques.
  • The effectiveness of SC31 is enhanced by its interactions with immune system components and exhibits a dose-dependent response, showing therapeutic promise without causing harmful antibody-related effects.
View Article and Find Full Text PDF

Background: Persistent transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has given rise to a COVID-19 pandemic. Several vaccines, conceived in 2020, that evoke protective spike antibody responses are being deployed in mass public health vaccination programs. Recent data suggests, however, that as sequence variation in the spike genome accumulates, some vaccines may lose efficacy.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown. In the present study, we examined apoptosis in postmortem lung sections from COVID-19 patients and in lung tissues from a non-human primate model of SARS-CoV-2 infection, in a cell-type manner, including type 1 and 2 alveolar cells and vascular endothelial cells (ECs), macrophages, and T cells.

View Article and Find Full Text PDF

Recent studies have shown the domestic ferret () to be a promising small animal model for the study of Ebola virus (EBOV) disease and medical countermeasure evaluation. To date, most studies have focused on traditional challenge routes, predominantly intramuscular and intranasal administration. Here, we present results from a non-clinical pathogenicity study examining oronasal, oral, and ocular mucosal challenge routes in ferrets.

View Article and Find Full Text PDF

The SARS-CoV-2 pandemic has inspired renewed interest in understanding the fundamental pathology of acute respiratory distress syndrome (ARDS) following infection because fatal COVID-19 cases are commonly linked to respiratory failure due to ARDS. The pathologic alteration known as diffuse alveolar damage in endothelial and epithelial cells is a critical feature of acute lung injury in ARDS. However, the pathogenesis of ARDS following SRAS-CoV-2 infection remains largely unknown.

View Article and Find Full Text PDF

spores that are re-aerosolized from surface deposits after initial contamination present significant health risks for personnel involved in decontamination. To model repeated exposure to low dose spores, three groups of seven rabbits were challenged with multiple low-doses of spores 5 days a week for 3 weeks. Mortality, body temperature, heart and respiration rates, hematology, C-reactive protein, bacteremia, and serum protective antigen were monitored for 21 days post-exposure after the last of multiple doses.

View Article and Find Full Text PDF

The use of antibiotics is a vital means of treating infections caused by the bacteria . Importantly, with the potential future use of multidrug-resistant strains of as bioweapons, new antibiotics are needed as alternative therapeutics. In this blinded study, we assessed the protective efficacy of teixobactin, a recently discovered antibiotic, against inhalation anthrax infection in the adult rabbit model.

View Article and Find Full Text PDF

The recent outbreaks of the Ebola virus (EBOV) in Africa have brought global visibility to the shortage of available therapeutic options to treat patients infected with this or closely related viruses. We have recently computationally identified three molecules which have all demonstrated statistically significant efficacy in the mouse model of infection with mouse adapted Ebola virus (ma-EBOV). One of these molecules is the antimalarial pyronaridine tetraphosphate (IC range of 0.

View Article and Find Full Text PDF

Credible dose-response relationships are needed to more accurately assess the risk posed by exposure to low-level contamination during or following a release. To begin to fill this knowledge gap, New Zealand White rabbits were implanted with D70-PCT telemetry transmitters and subsequently aerosol challenged with average inhaled doses of 2.86 x 10 to 2.

View Article and Find Full Text PDF

Live-attenuated V4020 vaccine for Venezuelan equine encephalitis virus (VEEV) containing attenuating rearrangement of the virus structural genes was evaluated in a non-human primate model for immunogenicity and protective efficacy against aerosol challenge with wild-type VEEV. The genomic RNA of V4020 vaccine virus was encoded in the pMG4020 plasmid under control of the CMV promoter and contained the capsid gene downstream from the glycoprotein genes. It also included attenuating mutations from the VEE TC83 vaccine, with E2-120Arg substitution genetically engineered to prevent reversion mutations.

View Article and Find Full Text PDF

Recent outbreaks of the Ebola virus (EBOV) have focused attention on the dire need for antivirals to treat these patients. We identified pyronaridine tetraphosphate as a potential candidate as it is an approved drug in the European Union which is currently used in combination with artesunate as a treatment for malaria (EC50 between 420 nM-1.14 μM against EBOV in HeLa cells).

View Article and Find Full Text PDF