Publications by authors named "Jason Dearling"

Acute respiratory failure can cause profound hypoxaemia that leads to organ injury or death within minutes. When conventional interventions are ineffective, the intravenous administration of oxygen can rescue patients from severe hypoxaemia, but at the risk of microvascular obstruction and of toxicity of the carrier material. Here we describe polymeric microbubbles as carriers of high volumes of oxygen (350-500 ml of oxygen per litre of foam) that are stable in storage yet quickly dissolve following intravenous injection, reverting to their soluble and excretable molecular constituents.

View Article and Find Full Text PDF

Prostate and ovarian cancers affect the male and female reproductive organs and are among the most common cancers in developing countries. Previous studies have demonstrated that cancer cells have a high rate of aerobic glycolysis that is present in nearly all invasive human cancers and persists even under normoxic conditions. Aerobic glycolysis has been correlated with chemotherapeutic resistance and tumor aggressiveness.

View Article and Find Full Text PDF

Colloids, known as volume expanders, have been used as resuscitation fluids for hypovolemic shock for decades, as they increase plasma oncotic pressure and expand intravascular volume. However, recent studies show that commonly used synthetic colloids have adverse interactions with human biological systems. In this work, a low-fouling amine(N)-oxide-based zwitterionic polymer as an alternative volume expander with improved biocompatibility and efficacy is designed.

View Article and Find Full Text PDF

The successful in vivo implementation of gene expression modulation strategies relies on effective, non-immunogenic delivery vehicles. Lipid nanoparticles are one of the most advanced non-viral clinically approved nucleic-acid delivery systems. Yet lipid nanoparticles accumulate naturally in liver cells upon intravenous administration, and hence, there is an urgent need to enhance uptake by other cell types.

View Article and Find Full Text PDF

Background: A major challenge to the long-term success of neuroblastoma therapy is widespread metastases that survive initial therapy as minimal residual disease (MRD). The SSTR2 receptor is expressed by most neuroblastoma tumors making it an attractive target for molecularly targeted radionuclide therapy. SARTATE consists of octreotate, which targets the SSTR2 receptor, conjugated to MeCOSar, a bifunctional chelator with high affinity for copper.

View Article and Find Full Text PDF

The immune system's ability to recognize peptides on major histocompatibility molecules contributes to the eradication of cancers and pathogens. Tracking these responses in vivo could help evaluate the efficacy of immune interventions and improve mechanistic understanding of immune responses. For this purpose, we employ synTacs, which are dimeric major histocompatibility molecule scaffolds of defined composition.

View Article and Find Full Text PDF

The cell membrane glycolipid GD2 is expressed by multiple solid tumors, including 88% of osteosarcomas and 98% of neuroblastomas. However, osteosarcomas are highly heterogeneous, with many tumors exhibiting GD2 expression on <50% of the individual cells, while some tumors are essentially GD2-negative. Anti-GD2 immunotherapy is the current standard of care for high-risk neuroblastoma, but its application to recurrent osteosarcomas, for which no effective therapies exist, has been extremely limited.

View Article and Find Full Text PDF

The development of nanomedicines presents the potential to deliver more potent drugs targeted more specifically to the site(s) of disease than is currently achievable. While encouraging results have been achieved, including at the clinical level, significant challenges and opportunities for development remain, both in terms of further developing the technology and in understanding the underlying biology. Given the lessons learned regarding variations in nanomedicine delivery to different tumor types and between different patients with the same tumor type, this is an area of drug development that, rather than simply benefiting from a patient-specific approach, actually demands it.

View Article and Find Full Text PDF

Background: Measurement of trace metal contamination is critical in the production of radiometals, such as 64Cu, for protein labeling. ICP-MS provides these data with high sensitivity and high specificity, but at high (instrument) cost. TETA (1,4,8,11-tetraazacyclotetradecane-1,4,8,11- tetraacetic acid) titration provides high sensitivity at low cost but with low specificity.

View Article and Find Full Text PDF

Background: Positron emission tomography combined with a specific probe presents the ability to noninvasively assess inflammatory bowel disease. We previously reported increased intestinal uptake of a Cu-labeled anti-β7 integrin antibody (clone FIB504.64) in colitic mice.

View Article and Find Full Text PDF

The development of biomolecules as imaging probes requires radiolabeling methods that do not significantly influence their biodistribution. Sarcophagine (Sar) chelators form extremely stable complexes with copper and are therefore a promising option for labeling proteins with (64)Cu. However, initial studies using the first-generation sarcophagine bifunctional chelator SarAr to label the engineered antibody fragment ch14.

View Article and Find Full Text PDF

Background: Positron emission tomography (PET) has the potential to be a specific, sensitive and quantitative diagnostic test for transplant rejection. To test this hypothesis, we evaluated F-labeled fluorodeoxyglucose ([F]FDG) and N-labeled ammonia ([N]NH3) small animal PET imaging in a well-established murine cardiac rejection model.

Methods: Heterotopic transplants were performed using minor major histocompatibility complex-mismatched B6.

View Article and Find Full Text PDF

Purpose: Ewing sarcoma is a tumor of the bone and soft tissue characterized by diffuse cell membrane expression of CD99 (MIC2). Single-site, surgically resectable disease is associated with an excellent 5-year event-free survival; conversely, patients with distant metastases have a poor prognosis. Noninvasive imaging is the standard approach to identifying sites of metastatic disease.

View Article and Find Full Text PDF

Introduction: The αvβ3 integrin, which is expressed by angiogenic epithelium and some tumor cells, is an attractive target for the development of both imaging agents and therapeutics. While optimal implementation of αvβ3-targeted therapeutics will require a priori identification of the presence of the target, the clinical evaluation of these compounds has typically not included parallel studies with αvβ3-targeted diagnostics. This is at least partly due to the relatively limited availability of PET radiopharmaceuticals in comparison to those labeled with (99m)Tc.

View Article and Find Full Text PDF

Unlabelled: The hu14.18K322A variant of the GD2-targeting antibody hu14.18 has been shown to elicit a level of antibody-dependent cell-mediated cytotoxicity toward human neuroblastoma cells similar to that of the parent antibody.

View Article and Find Full Text PDF

Integrins are involved in a wide range of cell interactions. Imaging their distribution using high-resolution noninvasive techniques that are directly translatable to the clinic can provide new insights into disease processes and presents the opportunity to directly monitor new therapies. In this chapter, we describe a protocol to image, the in vivo distribution of the integrin β(7), expressed by lymphocytes recruited to and retained by the inflamed gut, using a radiolabeled whole antibody.

View Article and Find Full Text PDF

Radioimmunotherapy (RIT) is a cancer treatment that exploits the specific targeting capability of monoclonal antibodies to deliver cytotoxic radionuclides to antigen-expressing tumor cells or stromal targets. While this has been extremely successful in the treatment of hematologic malignancies, RIT of solid tumors has produced less prolonged effects. In our laboratory, we have developed a bench-to-bedside translational pipeline with the aim of optimizing RIT for solid tumors.

View Article and Find Full Text PDF

Introduction: Use of copper radioisotopes in antibody radiolabeling is challenged by reported loss of the radionuclide from the bifunctional chelator used to label the protein. The objective of this study was to investigate the relationship between the thermodynamic stability of the (64)Cu-complexes of five commonly used bifunctional chelators (BFCs) and the biodistribution of an antibody labeled with (64)Cu using these chelators in tumor-bearing mice.

Methods: The chelators [S-2-(aminobenzyl)1,4,7-triazacyclononane-1,4,7-triacetic acid (p-NH(2)-Bn-NOTA): 6-[p-(bromoacetamido)benzyl]-1, 4, 8, 11-tetraazacyclotetradecane-N, N', N'', N'''-tetraacetic acid (BAT-6): S-2-(4-aminobenzyl)-1,4,7,10-tetraazacyclododocane tetraacetic acid (p-NH(2)-Bn-DOTA): 1,4,7,10-tetraazacyclododocane-N, N', N", N"'-tetraacetic acid (DOTA): and 1-N-(4-aminobenzyl)-3,6,10,13,16,19-hexaazabicyclo[6.

View Article and Find Full Text PDF

Cu(II)-ATSM continues to be investigated, both in the laboratory and in the clinic, as a tumor hypoxia imaging agent. However, meaningful interpretation of these images requires a more complete understanding of the mechanism by which the tracer is trapped within the cell. Cu(II)-ATSM is a simple molecule and its biochemical interaction with cells is similarly simple, mainly based upon redox chemistry.

View Article and Find Full Text PDF

Background: The primary function of integrin beta(7) is the recruitment and retention of lymphocytes to the inflamed gut. The aim of this study was to investigate the possibility of imaging colitis radioimmunodetection by targeting the beta(7) integrin with a radiolabeled antibody.

Methods: FIB504.

View Article and Find Full Text PDF

Introduction: Radioimmunotherapy (RIT) has been shown to be more effective against solid tumor micrometastases, possibly due to an inverse relationship between tumor size and radiolabeled antibody uptake. In this study, the accretion of radiolabeled antibody in intrahepatic micrometastases in an experimental model was investigated using quantitative digital autoradiography, enabling the analysis of antibody uptake in microscopic tumors.

Methods: Mice bearing subcutaneous or intrahepatic metastatic models of LS174T colorectal cancer were injected with radiolabeled anti-carcinoembryonic antigen antibody ([(125)I]A5B7).

View Article and Find Full Text PDF

Purpose: Most radioimmunotherapy studies on radiolabeled antibody distribution are based on autoradiographic and radioluminographic data, which provide a lack of detailed information due to low resolution. We used fluorescently labeled anti-carcinoembryonic antigen (CEA) antibody (A5B7) to investigate quantitatively the kinetics and microdistribution of antibody in a clinically relevant orthotopic colorectal cancer model (LS174T) using high-resolution digital microscopy.

Experimental Design: Nude mice bearing LS174T liver orthotopic tumors received a single i.

View Article and Find Full Text PDF

Solid tumors have a heterogeneous pathophysiology, which directly affects antibody-targeted therapies. Here, we consider the influence of selected tumor parameters on radioimmunotherapy, by comparing the gross biodistribution, microdistribution, and therapeutic efficacy of either radiolabeled or fluorescently labeled antibodies (A5B7 anti-carcinoembryonic antigen antibody and a nonspecific control) after i.v.

View Article and Find Full Text PDF

The advancement of positron emission tomography (PET) depends on the development of new radiotracers that will complement (18)F-FDG. Copper-64 ((64)Cu) is a promising PET radionuclide, particularly for antibody-targeted imaging, but the high in vivo lability of conventional chelates has limited its clinical application. The objective of this work was to evaluate the novel chelating agent SarAr (1-N-(4-aminobenzyl)-3, 6,10,13,16,19-hexaazabicyclo[6.

View Article and Find Full Text PDF