Publications by authors named "Jason D Zuke"

SUMMARYNatural competence, the physiological state wherein bacteria produce proteins that mediate extracellular DNA transport into the cytosol and the subsequent recombination of DNA into the genome, is conserved across the bacterial domain. DNA must successfully translocate across formidable permeability barriers during import, including the cell membrane(s) and the cell wall, that are normally impermeable to large DNA polymers. This review will examine the mechanisms underlying DNA transport from the extracellular space to the cytoplasmic membrane.

View Article and Find Full Text PDF

The first step in the process of bacterial natural transformation is DNA capture. Although long hypothesized based on genetics and functional experiments, the pilus structure responsible for initial DNA binding had not yet been visualized for . Here, we visualize functional competence pili in using fluorophore-conjugated maleimide labeling in conjunction with epifluorescence microscopy.

View Article and Find Full Text PDF

The first step in the process of bacterial natural transformation is DNA capture. Although long-hypothesized based on genetics and functional experiments, the pilus structure responsible for initial DNA-binding had not yet been visualized for Bacillus subtilis. Here, we visualize functional competence pili in Bacillus subtilis using fluorophore-conjugated maleimide labeling in conjunction with epifluorescence microscopy.

View Article and Find Full Text PDF

The molecular and ecological factors shaping horizontal gene transfer (HGT) via natural transformation in microbial communities are largely unknown, which is critical for understanding the emergence of antibiotic-resistant pathogens. We investigate key factors shaping HGT in a microbial co-culture by quantifying extracellular DNA release, species growth, and HGT efficiency over time. In the co-culture, plasmid release and HGT efficiency are significantly enhanced than in the respective monocultures.

View Article and Find Full Text PDF

Background: Changes in nutrient availability have dramatic and well-defined impacts on both transcription and translation in bacterial cells. At the same time, the role of post-translational control in adaptation to nutrient-poor environments is poorly understood. Previous studies demonstrate the ability of the glucosyltransferase UgtP to influence cell size in response to nutrient availability.

View Article and Find Full Text PDF