The genes - which include and ( ) - evolved from Ty3 retrotransposons and encode proteins that form virus-like capsids. These capsids enable a novel form of intercellular communication by transferring RNAs between cells. However, the specific neuronal circuits and brain processes Arc intercellular signaling regulates remain unknown.
View Article and Find Full Text PDFThe paraneoplastic Ma antigen (PNMA) proteins are associated with cancer-induced paraneoplastic syndromes that present with an autoimmune response and neurological symptoms. Why PNMA proteins are associated with this severe autoimmune disease is unclear. PNMA genes are predominantly expressed in the central nervous system and are ectopically expressed in some tumors.
View Article and Find Full Text PDFForaging in animals relies on innate decision-making heuristics that can result in suboptimal cognitive biases in some contexts. The mechanisms underlying these biases are not well understood, but likely involve strong genetic effects. To explore this, we studied fasted mice using a naturalistic foraging paradigm and discovered an innate cognitive bias called "second-guessing.
View Article and Find Full Text PDFThe () genes are associated with cancer-induced paraneoplastic syndromes that present with neurological symptoms and autoantibody production. How PNMA proteins trigger a severe autoimmune disease is unclear. genes are predominately expressed in the central nervous system with little known functions but are ectopically expressed in some tumors.
View Article and Find Full Text PDFHuntington's disease is characterized by accumulation of the aggregation-prone mutant Huntingtin (mHTT) protein. Here, we show that expression of exon 1 of mHTT in mouse cultured cells activates IRE1, the transmembrane sensor of stress in the endoplasmic reticulum, leading to degradation of the mRNA and repositioning of lysosomes and late endosomes toward the microtubule organizing center. Overriding degradation results in excessive accumulation of mHTT aggregates in both cultured cells and primary neurons.
View Article and Find Full Text PDFMemory consolidation is thought to occur through protein synthesis-dependent synaptic plasticity mechanisms such as long-term potentiation (LTP). Dynamic changes in gene expression and epigenetic modifications underlie the maintenance of LTP. Similar mechanisms may mediate the storage of memory.
View Article and Find Full Text PDFViruses and transposable elements are major drivers of evolution and make up over half the sequences in the human genome. In some cases, these elements are co-opted to perform biological functions for the host. Recent studies made the surprising observation that the neuronal gene Arc forms virus-like protein capsids that can transfer RNA between neurons to mediate a novel intercellular communication pathway.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFNeuronal activation induces rapid transcription of immediate early genes (IEGs) and longer-term chromatin remodeling around secondary response genes (SRGs). Here, we use high-resolution chromosome-conformation-capture carbon-copy sequencing (5C-seq) to elucidate the extent to which long-range chromatin loops are altered during short- and long-term changes in neural activity. We find that more than 10% of loops surrounding select IEGs, SRGs, and synaptic genes are induced de novo during cortical neuron activation.
View Article and Find Full Text PDFThe development of neuronal circuits requires both hard-wired gene expression and experience-dependent plasticity. Sensory processing, such as binocular vision, is especially sensitive to perturbations of experience. We investigated the experience-dependent development of the binocular visual cortex at single-cell resolution by using two-photon calcium imaging in awake mice.
View Article and Find Full Text PDFArc, a neuronal gene that is critical for synaptic plasticity, originated through the domestication of retrotransposon Gag genes and mediates intercellular messenger RNA transfer. We report high-resolution structures of retrovirus-like capsids formed by Drosophila dArc1 and dArc2 that have surface spikes and putative internal RNA-binding domains. These data demonstrate that virus-like capsid-forming properties of Arc are evolutionarily conserved and provide a structural basis for understanding their function in intercellular communication.
View Article and Find Full Text PDFSymbiotic microbes impact the function and development of the central nervous system (CNS); however, little is known about the contribution of the microbiota during viral-induced neurologic damage. We identify that commensals aid in host defense following infection with a neurotropic virus through enhancing microglia function. Germfree mice or animals that receive antibiotics are unable to control viral replication within the brain leading to increased paralysis.
View Article and Find Full Text PDFWhile the role of protein synthesis in synaptic plasticity and memory is well-established, protein degradation processes have been less studied. A seminal 2003 Nature Neuroscience paper showed that ubiquitin-dependent degradation of synaptic proteins is engaged during activity-regulated synaptic remodeling.
View Article and Find Full Text PDFThe neuronal gene Arc is essential for long-lasting information storage in the mammalian brain, mediates various forms of synaptic plasticity, and has been implicated in neurodevelopmental disorders. However, little is known about Arc's molecular function and evolutionary origins. Here, we show that Arc self-assembles into virus-like capsids that encapsulate RNA.
View Article and Find Full Text PDFThe neuronal gene Arc is essential for long-lasting information storage in the mammalian brain and has been implicated in various neurological disorders. However, little is known about Arc's evolutionary origins. Recent studies suggest that mammalian Arc originated from a vertebrate lineage of Ty3/gypsy retrotransposons, which are also ancestral to retroviruses.
View Article and Find Full Text PDFAngelman syndrome (AS) is a neurodevelopmental disorder that results from deletions or mutations in chromosome 15, which usually includes the gene. Ube3A protein is an E3 ubiquitin ligase that ubiquitinates proteins and targets them for degradation. The immediate-early gene Arc, a master regulator of synaptic plasticity, was identified as a putative substrate of Ube3A, but there have been conflicting reports on whether Arc is a bona fide E3 ligase substrate.
View Article and Find Full Text PDFThe molecular basis for the decline in experience-dependent neural plasticity over age remains poorly understood. In visual cortex, the robust plasticity induced in juvenile mice by brief monocular deprivation during the critical period is abrogated by genetic deletion of Arc, an activity-dependent regulator of excitatory synaptic modification. Here, we report that augmenting Arc expression in adult mice prolongs juvenile-like plasticity in visual cortex, as assessed by recordings of ocular dominance (OD) plasticity in vivo.
View Article and Find Full Text PDFArc (activity-regulated cytoskeleton-associated protein) is a neuron-specific immediate early gene that is required for enduring forms of synaptic plasticity and memory in the mammalian brain. Arc expression is highly dynamic, and tightly regulated by neuronal activity and experience. Local translation of Arc protein at synapses is critical for synaptic plasticity, which is mediated by Arc-dependent trafficking of AMPA (α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid)-type glutamate receptors.
View Article and Find Full Text PDFNew strategies for introducing genetically encoded activity indicators into animal models facilitate the investigation of nervous system function. We have developed the PC::G5-tdT mouse line that expresses the GCaMP5G calcium indicator in a Cre-dependent fashion. Instead of targeting the ROSA26 locus, we inserted the reporter cassette nearby the ubiquitously expressed Polr2a gene without disrupting locus integrity.
View Article and Find Full Text PDFFront Mol Neurosci
October 2012
Experience shapes and molds the brain throughout life.These changes in neuronal circuits are produced by a myriad of molecular and cellular processes. Simplistically, circuits are modified through changes in neurotransmitter release or through neurotransmitter detection at synapses.
View Article and Find Full Text PDFAssemblies of β-amyloid (Aβ) peptides are pathological mediators of Alzheimer's Disease (AD) and are produced by the sequential cleavages of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase. The generation of Aβ is coupled to neuronal activity, but the molecular basis is unknown. Here, we report that the immediate early gene Arc is required for activity-dependent generation of Aβ.
View Article and Find Full Text PDF