Heart failure with preserved ejection fraction (HFpEF) is the most common type of HF in older adults. Although no pharmacological therapy has yet improved survival in HFpEF, exercise training (ExT) has emerged as the most effective intervention to improving functional outcomes in this age-related disease. The molecular mechanisms by which ExT induces its beneficial effects in HFpEF, however, remain largely unknown.
View Article and Find Full Text PDFInterferon regulatory factor 3 (IRF3) and type I interferons (IFNs) protect against infections and cancer, but excessive IRF3 activation and type I IFN production cause autoinflammatory conditions such as Aicardi-Goutières syndrome and STING-associated vasculopathy of infancy (SAVI). Myocardial infarction (MI) elicits inflammation, but the dominant molecular drivers of MI-associated inflammation remain unclear. Here we show that ischemic cell death and uptake of cell debris by macrophages in the heart fuel a fatal response to MI by activating IRF3 and type I IFN production.
View Article and Find Full Text PDFWe developed a tissue-engineered vascular graft composed of biodegradable scaffold seeded with autologous bone marrow-derived mononuclear cells (BMMCs) that is currently in clinical trial and developed analogous mouse models to study mechanisms of neovessel formation. We previously reported that seeded human BMMCs were rapidly lost after implantation into immunodeficient mice as host macrophages invaded the graft. As a consequence, the resulting neovessel was entirely of host cell origin.
View Article and Find Full Text PDFBiodegradable scaffolds seeded with bone marrow mononuclear cells (BMCs) are the earliest tissue-engineered vascular grafts (TEVGs) to be used clinically. These TEVGs transform into living blood vessels in vivo, with an endothelial cell (EC) lining invested by smooth muscle cells (SMCs); however, the process by which this occurs is unclear. To test if the seeded BMCs differentiate into the mature vascular cells of the neovessel, we implanted an immunodeficient mouse recipient with human BMC (hBMC)-seeded scaffolds.
View Article and Find Full Text PDFBackground: Use of prosthetic vascular grafts in pediatric vascular surgical applications is limited because of risk of infection, poor durability, potential for thromboembolic complications, and lack of growth potential. Construction of an autologous neovessel using tissue engineering technology offers the potential to create an improved vascular conduit for use in pediatric vascular applications.
Methods: Tissue-engineered vascular grafts were assembled from biodegradable tubular scaffolds fabricated from poly-L-lactic acid mesh coated with epsilon-caprolactone and L-lactide copolymer.
Introduction: The development of a living, autologous vascular graft with the ability to grow holds great promise for advancing the field of pediatric cardiothoracic surgery.
Objective: To evaluate the growth potential of a tissue-engineered vascular graft (TEVG) in a juvenile animal model.
Methods: Polyglycolic acid nonwoven mesh tubes (3-cm length, 1.
Hypothesis: The immunodeficient (severe combined immunodeficiency beige [SCID/bg]) mouse model provides a useful model for investigating vascular neotissue formation in human tissue-engineered arterial conduits (TEAC).
Design: Human aortic smooth muscle cells and endothelial cells were statically seeded on porous biodegradable polymeric scaffolds for vascular tissue engineering. These 2-cell tissue-engineered vascular conduits were implanted into immunodeficient female mice as aortic interposition grafts.
The development of neotissue in tissue engineered vascular grafts remains poorly understood. Advances in mouse genetic models have been highly informative in the study of vascular biology, but have been inaccessible to vascular tissue engineers due to technical limitations on the use of mouse recipients. To this end, we have developed a method for constructing sub-1mm internal diameter (ID) biodegradable scaffolds utilizing a dual cylinder chamber molding system and a hybrid polyester sealant scaled for use in a mouse model.
View Article and Find Full Text PDFBone marrow stromal cells (MSCs) are a promising cell source for a variety of tissue engineering applications, given their ready availability and ability to differentiate into multiple cell lineages. MSCs have been successfully used to create neotissue for cardiovascular, urological, and orthopedic reconstructive surgical procedures in preclinical studies. The ability to optimize seeding techniques of MSCs onto tissue engineering scaffolds and the ability to control neotissue formation in vitro will be important for the rational design of future tissue engineering applications using MSCs.
View Article and Find Full Text PDFBackground: Currently available vascular grafts for pediatric cardiovascular operations are limited by their inability to grow. Tissue-engineering techniques can be used to create vascular grafts with the potential for repair, remodeling, and growth. This study demonstrates the feasibility of constructing an autologous tissue-engineered venous conduit from bone marrow-derived vascular cells (BMVCs) in the ovine animal model.
View Article and Find Full Text PDF