Publications by authors named "Jason D Goodpaster"

Machine-learning models for predicting adsorption energies on metallic surfaces often rely on basic elemental properties and electronic and geometric descriptors. Here, we apply categorical entity embedding, a featurization method inspired by natural language processing techniques, to predict adsorption energies on bimetallic alloy surfaces using categorical descriptors. Using this method, we develop a machine-learned representation from categorical descriptors (e.

View Article and Find Full Text PDF

The hydroxylase component (S5HH) of salicylate-5-hydroxylase catalyzes C5 ring hydroxylation of salicylate but switches to methyl hydroxylation when a C5 methyl substituent is present. The use of O reveals that both aromatic and aryl-methyl hydroxylations result from monooxygenase chemistry. The functional unit of S5HH comprises a nonheme Fe(II) site located 12 Å across a subunit boundary from a one-electron reduced Rieske-type iron-sulfur cluster.

View Article and Find Full Text PDF

We demonstrate the accuracy and efficiency of the restricted open-shell and unrestricted formulation of the absolutely localized Huzinaga projection operator embedding method. Restricted open-shell and unrestricted Huzinaga projection embedding in the full system basis is formally exact to restricted open-shell and unrestricted Kohn-Sham density functional theory, respectively. By utilizing the absolutely localized basis, we significantly improve the efficiency of the method while maintaining high accuracy.

View Article and Find Full Text PDF

Electrocatalytic systems based on metal-organic frameworks (MOFs) have attracted great attention due to their potential application in commercially viable renewable energy-converting devices. We have recently shown that the cobalt 2,3,6,7,10,11-triphenylenehexathiolate () framework can catalyze the hydrogen evolution reaction (HER) in fully aqueous media with Tafel slopes as low as 71 mV/dec and near-unity Faradaic efficiency (FE). Taking advantage of the high synthetic tunability of MOFs, here, we synthesize a series of iron and mixed iron/cobalt THT-based MOFs.

View Article and Find Full Text PDF

The rational design of catalysts remains a challenging endeavor within the broader chemical community owing to the myriad variables that can affect key bond-forming events. Designing selective catalysts for any reaction requires an efficient strategy for discovering predictive structure-activity relationships. Herein, we describe the use of iterative supervised principal component analysis (ISPCA) in catalyst design.

View Article and Find Full Text PDF

The ring-opening oxidative amination of methylenecyclopropanes (MCPs) with diazenes catalyzed by pyTiCl(NR) complexes is reported. This reaction selectively generates branched α-methylene imines as opposed to linear α,β-unsaturated imines, which are difficult to access other methods. Products can be isolated as the imine or hydrolyzed to the corresponding ketone in good yields.

View Article and Find Full Text PDF

Materials that combine magnetic order with other desirable physical attributes could find transformative applications in spintronics, quantum sensing, low-density magnets and gas separations. Among potential multifunctional magnetic materials, metal-organic frameworks, in particular, bear structures that offer intrinsic porosity, vast chemical and structural programmability, and the tunability of electronic properties. Nevertheless, magnetic order within metal-organic frameworks has generally been limited to low temperatures, owing largely to challenges in creating a strong magnetic exchange.

View Article and Find Full Text PDF

Despite the promising previous reports on the development of electrocatalytic dithiolene-based metal-organic frameworks (MOFs) for the hydrogen evolution reaction (HER), these materials often display poor reproducibility of the HER performance because of their poor bulk properties upon integration with electrode materials. We demonstrate here an in-depth investigation of the electrocatalytic HER activity of a cobalt 2,3,6,7,10,11-triphenylenehexathiolate (CoTHT) MOF. To enhance the durability and charge transport properties of the constructed CoTHT/electrode architecture, CoTHT is deposited as an ink composite () composed of Nafion and carbon black.

View Article and Find Full Text PDF

Electrochemical oxidation of CH is known to be inefficient in aqueous electrolytes. The lower activity of methane oxidation reaction (MOR) is primarily attributed to the dominant oxygen evolution reaction (OER) and the higher barrier for CH activation on transition metal oxides (TMOs). However, a satisfactory explanation for the origins of such lower activity of MOR on TMOs, along with the enabling strategies to partially oxidize CH to CHOH, have not been developed yet.

View Article and Find Full Text PDF

Plasmonic materials interact strongly with light to focus and enhance electromagnetic radiation down to nanoscale volumes. Due to this localized confinement, materials that support localized surface plasmon resonances are capable of driving energetically unfavorable chemical reactions. In certain cases, the plasmonic nanostructures are able to preferentially catalyze the formation of specific photoproducts, which offers an opportunity for the development of solar-driven chemical synthesis.

View Article and Find Full Text PDF

Although there are myriad binding modes of heterocumulenes to metal centers, the monometallic κ-ECE (E = O, S, NR) coordination mode has not been reported. Herein, the synthesis, isolation, and physical characterization of CpTi(κ-BuNCNBu) () (Cp = cyclopentadienyl, Bu = -butyl), a strained 4-membered metallacycle bearing a free carbene, is described. Computational (DFT, CASSCF, QT-AIM, ELF) and solid-state CP-MAS C NMR spectroscopic analysis indicate that is best described as a free carbene with partial Ti-C bonding that results from Ti-N π-bonding mixing with N-C-N σ-bonding of the bent N-C-N framework.

View Article and Find Full Text PDF

Using wave function (WF) in density functional theory (DFT) embedding methods provides a framework for performing localized, high-accuracy WF calculations on a system, while not incurring the full computational cost of the WF calculation on the full system. To effectively partition a system into localized WF and DFT subsystems, we utilize the Huzinaga level-shift projection operator within an absolutely localized basis. In this work, we study the ability of the absolutely localized Huzinaga level-shift projection operator method to study complex WF and DFT partitions, including partitions between multiple covalent bonds, a double bond, and transition-metal-ligand bonds.

View Article and Find Full Text PDF

Phosphorylation is an essential protein modification and is most commonly associated with hydroxyl-containing amino acids via an adenosine triphosphate (ATP) substrate. The last decades have brought greater appreciation to the roles that phosphorylation of myriad amino acids plays in biological signaling, metabolism, and gene transcription. Histidine phosphorylation occurs in both eukaryotes and prokaryotes but has been shown to dominate signaling networks in the latter due to its role in microbial two-component systems.

View Article and Find Full Text PDF

Simple Ti imido halide complexes such as [BrTi(N Bu)py] are competent catalysts for the synthesis of unsymmetrical carbodiimides via Ti-catalyzed nitrene transfer from diazenes or azides to isocyanides. Both alkyl and aryl isocyanides are compatible with the reaction conditions, although product inhibition with sterically unencumbered substrates sometimes limits the yield when diazenes are employed as the oxidant. The reaction mechanism has been investigated both experimentally and computationally, wherein a key feature is that the product release is triggered by electron transfer from an -carbodiimide to a Ti-bound azobenzene.

View Article and Find Full Text PDF

We present a quantum embedding method that allows for calculation of local excited states embedded in a Kohn-Sham density functional theory (DFT) environment. Projection-based quantum embedding methodologies provide a rigorous framework for performing DFT-in-DFT and wave function in DFT (WF-in-DFT) calculations. The use of absolute localization, where the density of each subsystem is expanded in only the basis functions associated with the atoms of that subsystem, provide improved computationally efficiency for WF-in-DFT calculations by reducing the number of orbitals in the WF calculation.

View Article and Find Full Text PDF

The affinities and selectivities of lanthanide complexes with open coordination sites for anions vary considerably with the chelate. In order to determine the effect of the stability of a lanthanide complex on its affinity for anions, five different complexes featuring different bidentate chelating moieties were synthesized, and their affinity for anions in water at neutral pH were evaluated by longitudinal relaxometry measurements. The chelates comprise both oxygen and nitrogen donors including maltol, 1,2-hydroxypyridinone, hydroxamic acid, pyridin-2-ylmethanol, and carbamoylmethylphosphonate diester.

View Article and Find Full Text PDF

We here develop a fully quantum embedded version of initiator full configuration interaction quantum Monte Carlo (-FCIQMC) and apply it to study an ionic bond (lithium hydride, LiH) and a covalent bond (hydrogen flouride, HF) physisorbed to a benzene molecule. The embedding is performed using a recently developed Huzinaga projection operator approach, which affords good synergy with -FCIQMC by minimizing the number of orbitals in the calculation. When considering the dissociation energy of these bonds into closed-shell ionic fragments, we find that -FCIQMC embedded in density functional theory (-FCIQMC-in-DFT) delivers comparable accuracy with coupled cluster singles and doubles with perturbative triples embedded in density functional theory (CCSD(T)-in-DFT).

View Article and Find Full Text PDF

A combined computational and experimental study on the mechanism of Ti-catalyzed formal [2 + 2 + 1] pyrrole synthesis from alkynes and aryl diazenes is reported. This reaction proceeds through a formally Ti/Ti redox catalytic cycle as determined by natural bond orbital (NBO) and intrinsic bond orbital (IBO) analysis. Kinetic analysis of the reaction of internal alkynes with azobenzene reveals a complex equilibrium involving Ti═NPh monomer/dimer equilibrium and Ti═NPh + alkyne [2 + 2] cycloaddition equilibrium along with azobenzene and pyridine inhibition equilibria prior to rate-determining second alkyne insertion.

View Article and Find Full Text PDF

We present a level shift projection operator-based embedding method for systems with periodic boundary conditions-where the "active" subsystem can be described using either density functional theory (DFT) or correlated wave function (WF) methods and the "environment" is described using DFT. Our method allows for k-point sampling, is shown to be exactly equal to the canonical DFT solution of the full system under the limit that we use the full system basis to describe each subsystem, and can treat the active subsystem either with periodic boundary conditions-in what we term "periodic-in-periodic" embedding-or as a molecular cluster-in "cluster-in-periodic" embedding. We explore each of these methods and show that cluster WF-in-periodic DFT embedding can accurately calculate the absorption energy of CO on to a Si(100)-2×1 surface.

View Article and Find Full Text PDF

Electrochemical reduction of CO using renewable sources of electrical energy holds promise for converting CO to fuels and chemicals. Since this process is complex and involves a large number of species and physical phenomena, a comprehensive understanding of the factors controlling product distribution is required. While the most plausible reaction pathway is usually identified from quantum-chemical calculation of the lowest free-energy pathway, this approach can be misleading when coverages of adsorbed species determined for alternative mechanism differ significantly, since elementary reaction rates depend on the product of the rate coefficient and the coverage of species involved in the reaction.

View Article and Find Full Text PDF

Projection-based quantum embedding methodologies provide a framework for performing wave function-in-density functional theory (WF-in-DFT) calculations. The total WF-in-DFT energy is dependent on the partitioning of the total system and requires similar partitioning in each system for accurate energy differences. To achieve this, we enforce an absolute localization of the WF orbitals to basis functions only associated with the WF subsystem.

View Article and Find Full Text PDF

We have carried out a periodic Kohn-Sham density functional theory investigation of the pathways by which carbon-carbon bonds could be formed during the electrochemical reduction of CO2 on Cu(100) using a model that includes the effects of the electrochemical potential, solvent, and electrolyte. The electrochemical potential was set by relating the applied potential to the Fermi energy and then calculating the number of electrons required by the simulation cell for that specific Fermi energy. The solvent was included as a continuum dielectric, and the electrolyte was described using a linearized Poisson-Boltzmann model.

View Article and Find Full Text PDF

We analyze the sources of error in quantum embedding calculations in which an active subsystem is treated using wavefunction methods, and the remainder using density functional theory. We show that the embedding potential felt by the electrons in the active subsystem makes only a small contribution to the error of the method, whereas the error in the nonadditive exchange-correlation energy dominates. We test an MP2 correction for this term and demonstrate that the corrected embedding scheme accurately reproduces wavefunction calculations for a series of chemical reactions.

View Article and Find Full Text PDF

Density functional theory (DFT) provides a formally exact framework for performing embedded subsystem electronic structure calculations, including DFT-in-DFT and wavefunction theory-in-DFT descriptions. In the interest of efficiency, it is desirable to truncate the atomic orbital basis set in which the subsystem calculation is performed, thus avoiding high-order scaling with respect to the size of the MO virtual space. In this study, we extend a recently introduced projection-based embedding method [F.

View Article and Find Full Text PDF

Density functional theory (DFT) embedding provides a formally exact framework for interfacing correlated wave-function theory (WFT) methods with lower-level descriptions of electronic structure. Here, we report techniques to improve the accuracy and stability of WFT-in-DFT embedding calculations. In particular, we develop spin-dependent embedding potentials in both restricted and unrestricted orbital formulations to enable WFT-in-DFT embedding for open-shell systems, and develop an orbital-occupation-freezing technique to improve the convergence of optimized effective potential calculations that arise in the evaluation of the embedding potential.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: