Publications by authors named "Jason Cromer"

Objective: This study assessed classification accuracy of paper-and-pencil and computerized cognitive batteries at subacute (SA; 1-11 days) and early chronic (EC; ∼4 months) phases of pediatric mild traumatic brain injury (pmTBI). Two statistical approaches focused on single-subject performance (individual task scores, total impairments) were used to maximize clinical utility.

Method: Two hundred thirty-five pmTBI and 169 healthy controls (HC) participants aged 8-18 were enrolled, with a subset (190 pmTBI; 160 HC) returning for the EC visit.

View Article and Find Full Text PDF

Objective: This study aimed to examine the predictors of cognitive performance in patients with pediatric mild traumatic brain injury (pmTBI) and to determine whether group differences in cognitive performance on a computerized test battery could be observed between pmTBI patients and healthy controls (HC) in the sub-acute (SA) and the early chronic (EC) phases of injury.

Method: 203 pmTBI patients recruited from emergency settings and 159 age- and sex-matched HC aged 8-18 rated their ongoing post-concussive symptoms (PCS) on the Post-Concussion Symptom Inventory and completed the Cogstate brief battery in the SA (1-11 days) phase of injury. A subset (156 pmTBI patients; 144 HC) completed testing in the EC (~4 months) phase.

View Article and Find Full Text PDF

Cognitive theories suggest that working memory maintains not only the identity of recently presented stimuli but also a sense of the elapsed time since the stimuli were presented. Previous studies of the neural underpinnings of working memory have focused on sustained firing, which can account for maintenance of the stimulus identity, but not for representation of the elapsed time. We analyzed single-unit recordings from the lateral prefrontal cortex of macaque monkeys during performance of a delayed match-to-category task.

View Article and Find Full Text PDF

Objective: Repeat cognitive assessment comparing post-injury performance to a pre-injury baseline is common in concussion management. Although post-injury tests are typically administered in clinical settings, baseline tests may be conducted individually with one-on-one supervision, in a group with supervision, or without supervision. The extent to which these different test settings affect cognitive performance is not well understood.

View Article and Find Full Text PDF

To better understand the nature and rate of cognitive change across adolescence, the Cogstate Brief Battery (CBB) was utilized to assess psychomotor function, attention, working memory, and visual learning in individuals aged 10-18 years old. Since all CBB tasks have equivalent perceptual, motor, and linguistic demands as well as being appropriate for both children and adults, this approach allowed direct across-age comparison of multiple cognitive domains. Exponential decreases in reaction time and linear increases in accuracy were observed across adolescent development in a cross-sectional sample of 38,778 individuals and confirmed in a 5788 individual longitudinal sample with 1-year repeat assessments.

View Article and Find Full Text PDF

Concussion-related cognitive impairments are typically evaluated with repeated neuropsychological assessments where post-injury performances are compared with pre-injury baseline data (baseline method). Many cases of concussions, however, are evaluated in the absence of baseline data by comparing post-injury performances with normative data (normative method). This study aimed to compare the sensitivity and specificity of these two methods using the CogSport/Axon test battery.

View Article and Find Full Text PDF

Previous work has shown that neurons in the PFC show selectivity for learned categorical groupings. In contrast, brain regions lower in the visual hierarchy, such as inferior temporal cortex, do not seem to favor category information over information about physical appearance. However, the role of premotor cortex (PMC) in categorization has not been studied, despite evidence that PMC is strongly engaged by well-learned tasks and reflects learned rules.

View Article and Find Full Text PDF

Several psychological constructs (e.g., subjective perception of intoxication, visuomotor speed) display acute tolerance to alcohol, that is, show improvement at declining blood alcohol concentrations (BACs) relative to equivalent rising BACs.

View Article and Find Full Text PDF

The PFC plays a central role in our ability to learn arbitrary rules, such as "green means go." Previous experiments from our laboratory have used conditional association learning to show that slow, gradual changes in PFC neural activity mirror monkeys' slow acquisition of associations. These previous experiments required monkeys to repeatedly reverse the cue-saccade associations, an ability known to be PFC-dependent.

View Article and Find Full Text PDF

Neural correlates of visual categories have been previously identified in the prefrontal cortex (PFC). However, whether individual neurons can represent multiple categories is unknown. Varying degrees of generalization versus specialization of neurons in the PFC have been theorized.

View Article and Find Full Text PDF

The oculomotor system must convert signals representing the target of an intended eye movement into appropriate input to drive the individual extraocular muscles. Neural models propose that this transformation may involve either a decomposition of the intended eye displacement signal into horizontal and vertical components or an implicit process whereby component signals do not predominate until the level of the motor neurons. Thus decomposition models predict that premotor neurons should primarily encode component signals while implicit models predict encoding of off-cardinal optimal directions by premotor neurons.

View Article and Find Full Text PDF

CNTF (ciliary neurotrophic factor) has been suggested to be an important survival factor for oligodendrocytes; however, this effect is inconsistently obtained and myelination appears normal in CNTF null animals. On the other hand, CNTF stimulates astrocytes to produce growth and trophic factors. Therefore, we tested the hypothesis that CNTF acts indirectly through astrocytes to promote oligodendrocyte survival.

View Article and Find Full Text PDF

Neurones in the central mesencephalic reticular formation (cMRF) begin to discharge prior to saccades. These long lead burst neurones interact with major oculomotor centres including the superior colliculus (SC) and the paramedian pontine reticular formation (PPRF). Three different functions have been proposed for neurones in the cMRF: (1) to carry eye velocity signals that provide efference copy information to the SC (feedback), (2) to provide duration signals from the omnipause neurones to the SC (feedback), or (3) to participate in the transformation from the spatial encoding of a target selection signal in the SC into the temporal pattern of discharge used to drive the excitatory burst neurones in the pons (feed-forward).

View Article and Find Full Text PDF

Prior studies of the central portion of the mesencephalic reticular formation (cMRF) have shown that in head-restrained monkeys, neurons discharge prior to saccades. Here, we provide a systematic analysis of the patterns of activity in cMRF neurons during head unrestrained gaze shifts. Two types of cMRF neurons were found: presaccadic neurons began to discharge before the onset of gaze movements, while postsaccadic neurons began to discharge after gaze shift onset and typically after the end of the gaze shift.

View Article and Find Full Text PDF

The accompanying paper demonstrated two distinct types of central mesencephalic reticular formation (cMRF) neuron that discharged before or after the gaze movement: pre-saccadic or post-saccadic. The movement fields of pre-saccadic neurons were most closely associated with gaze displacement. The movement fields of post-saccadic neurons were most closely associated with head displacement.

View Article and Find Full Text PDF