With the industrialisation of nanoparticle manufacture, the pervasive incursion of nanoparticles into the environment, the need to characterise nano-scale pharmaceuticals and living systems in replicated in vivo conditions, the continuing development of new theories to describe the electro-kinetic behaviour of nano-particles in representative ionic strengths and numerous other applications, there is an urgent requirement to provide simple and effective experimental tools to validate these models and explore new systems. Micro-electrophoresis implemented with a diffusion barrier, which isolates the dispersed phase from the electrode surface, is demonstrated as enabling such measurements for the first time, preventing the catastrophic outgassing, precipitation and sample degradation observed when the dispersed phase is in close proximity to the electrode surface. Using a measurement of a few minute's duration in a standard laboratory light scattering instrument we reproduce the theoretically predicted phenomena of asymptotic, non-zero electrophoretic mobility with increasing ionic strength, the cationic Hofmeister series dependency, charge inversion and a continuously decreasing variation in mobility with pH as molarity increases.
View Article and Find Full Text PDFDynamic Light Scattering (DLS) is a ubiquitous and non-invasive measurement for the characterization of nano- and micro-scale particles in dispersion. The sixth power relationship between scattered intensity and particle radius is simultaneously a primary advantage whilst rendering the technique sensitive to unwanted size fractions from unclean lab-ware, dust and aggregated & dynamically aggregating sample, for example. This can make sample preparation iterative, challenging and time consuming and often requires the use of data filtering methods that leave an inaccurate estimate of the steady state size fraction and may provide no knowledge to the user of the presence of the transient fractions.
View Article and Find Full Text PDFCapillary dynamic light scattering (DLS) is a new, simple and enabling technique, that increases the size range of DLS by over an order of magnitude in a cheap, disposable, but high optical quality, glass capillary. Sample loading for other capillary-based modalities, such as blood analysis, is typically achieved by dipping the capillary into the bulk sample, however, DLS is exquisitely sensitive to static scattering such as from a fluid meniscus or sample dried on the outside of the capillary and is sometimes used for extended measurement times where evaporation must be avoided. In this work, we carefully validate capillary dipping and sealing with a clay plug for DLS against reference measurements in a high quality 1 cm cuvette and then introduce a simple capillary loading scheme that reproducibly places a >3 μl sample in the correct location for a DLS measurement.
View Article and Find Full Text PDFA new technique for the measurement of protein mobility using laser Doppler electrophoresis (LDE) is introduced and characterised. The diffusion barrier approach loads a tiny protein sample volume into a much larger volume of dispersant, which contains the electrodes; the LDE measurement is then recorded before the sample can diffuse to the electrodes. We demonstrate that sample volumes are reduced by up to two orders of magnitude to volumes typically associated with separation techniques (∼50 μL), no reduction in measurement sensitivity occurs, samples can be retrieved usefully intact, post-measurement and typical measurement times are of the order of minutes.
View Article and Find Full Text PDFThe synthesis of high-strength, completely dense nanograined hydroxyapatite (bioceramic) monoliths is a challenge as high temperatures or long sintering times are often required. In this study, nanorods of hydroxyapatite (HA) and calcium-deficient HA (made using a novel continuous hydrothermal flow synthesis method) were consolidated using spark plasma sintering (SPS) up to full theoretical density in ∼5 min at temperatures up to 1000°C. After significant optimization of the SPS heating and loading cycles, fully dense HA discs were obtained which were translucent, suggesting very high densities.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2010
Zeta potential is the key parameter that controls electrostatic interactions in particle dispersions. Laser Doppler electrophoresis is an accepted method for the measurement of particle electrophoretic mobility and hence zeta potential of dispersions of colloidal size materials. Traditionally, samples measured by this technique have to be optically transparent.
View Article and Find Full Text PDFOpt Express
February 2009
The coupling efficiency of starlight into single and few-mode fibres fed with lenslet arrays to provide a continuous field of view is investigated. The single-mode field of view (FOV) and overall transmission is a highly complicated function of wavelength and fibre size leading to a continuous sample only in cases of poor throughput. Significant improvements are found in the few-mode regime with a continuous and efficient sample of the image plane shown to be possible with as few as 4 modes.
View Article and Find Full Text PDFWe determine the coupling characteristics of a large mode area (LMA) photonic crystal, single-mode fiber when fed with an on-axis field lens used to place an image of the telescope exit pupil at the fiber input. The maximum field of view is found to be approximately the same as that of feeding the fiber directly with the telescope PSF in the image plane. However, the field lens feed can be used to provide a flat, maximised coupling response over the entire visible-NIR which is not possible using either the highly wavelength dependent direct feed coupling to the LMA fiber or the attenuation spectrum limited step index fiber cases.
View Article and Find Full Text PDF