Publications by authors named "Jason Conder"

A prior multigenerational perfluorooctane sulfonic acid (PFOS) exposure investigation in zebrafish reported adverse effects at 0.734 µg/L, among the lowest aquatic effect levels for PFOS reported to date. The present three-generation PFOS exposure quantified survival, growth, reproduction, and vitellogenin (VTG; egg yolk protein) responses in zebrafish, incorporating experimental design and procedural improvements relative to the earlier study.

View Article and Find Full Text PDF

Zebrafish (Danio rerio) are among the aquatic species most sensitive to perfluorooctane sulfonate (PFOS). Environmental regulatory agencies and researchers use effect benchmarks from laboratory zebrafish PFOS toxicity studies in PFOS-spiked water to calculate PFOS aquatic life criteria. Threshold values as low as 0.

View Article and Find Full Text PDF

With the goal of aiding risk assessors conducting site-specific risk assessments at per- and polyfluoroalkyl substance (PFAS)-contaminated sites, this critical review synthesizes information on the ecotoxicity of PFAS to amphibians in 10 amphibian species and 16 peer-reviewed publications. The studies in this review consisted of spiked-PFAS chronic toxicity experiments with perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorohexane sulfonate (PFHxS), and 6:2 fluorotelomer sulfonate (6:2 FTS) that evaluated apical endpoints typical of ecological risk-based decision making (survival, growth, and development). Body mass was the most sensitive endpoint, showing clear and biologically meaningful population level adverse effect sizes (≥20% adverse effects).

View Article and Find Full Text PDF

A simple equilibrium passive sampler, consisting of water in an inert container capped with a rate-limiting barrier, for the monitoring of per- and polyfluoroalkyl substances (PFAS) in sediment pore water and surface water was developed and tested through a series of laboratory and field experiments. The objectives of the laboratory experiments were to determine (1) the membrane type that could serve as the sampler's rate-limiting barrier, (2) the mass transfer coefficient of environmentally relevant PFAS through the selected membrane, and (3) the performance reference compounds (PRCs) that could be used to infer the kinetics of PFAS diffusing into the sampler. Of the membranes tested, the polycarbonate (PC) membrane was deemed the most suitable rate-limiting barrier, given that it did not appreciably adsorb the studied PFAS (which have ≤8 carbons), and that the migration of these compounds through this membrane could be described by Fick's law of diffusion.

View Article and Find Full Text PDF

Sediment porewater dialysis passive samplers, also known as "peepers," are inert containers with a small volume of water (usually 1-100 mL) capped with a semi-permeable membrane. When exposed to sediment over a period of days to weeks, chemicals (typically inorganics) in sediment porewater diffuse through the membrane into the water. Subsequent analysis of chemicals in the peeper water sample can provide a value that represents the concentrations of freely-dissolved chemicals in sediment, a useful measurement for understanding fate and risk.

View Article and Find Full Text PDF

Activated carbon-based amendments have been demonstrated as a means of sequestering sediment-associated organic compounds such as polychlorinated biphenyls (PCBs). In a 2012 effort, an activated carbon amendment was placed at a 0.5-acre amendment area adjacent to and underneath Pier 7 at the Puget Sound Naval Shipyard and Intermediate Maintenance Facility, Bremerton, Washington, USA to reduce PCB availability.

View Article and Find Full Text PDF

Decades of research have shown that the concentration of freely dissolved PAH (C in sediment correlates with PAH bioavailability and toxicity to aquatic organisms. Passive sampling techniques and models have been used for measuring and predicting C respectively, but these techniques require weeks for analytical chemical measurements and data evaluation. This study evaluated the performance of a portable, field-deployable antibody-based PAH biosensor method that can provide measurements of PAH C within a matter of minutes using a small volume of mechanically-extracted sediment porewater.

View Article and Find Full Text PDF

A Society of Environmental Toxicology and Chemistry (SETAC) Focused Topic Meeting (FTM) on the environmental management of per- and polyfluoroalkyl substances (PFAS) convened during August 2019 in Durham, North Carolina (USA). Experts from around the globe were brought together to critically evaluate new and emerging information on PFAS including chemistry, fate, transport, exposure, and toxicity. After plenary presentations, breakout groups were established and tasked to identify and adjudicate via panel discussions overarching conclusions and relevant data gaps.

View Article and Find Full Text PDF

The use of aqueous film forming foam (AFFF) in the United States has caused concern about the potential effects of per- and polyfluoroalkyl substances (PFAS) on ecological resources. Moreover, the limited availability of scientific information and a lack of guidance have collectively resulted in significant challenges for ecological risk assessors supporting site-specific investigations and management decisions at PFAS-impacted sites. To address these needs, the environmental science and technology program of the Department of Defense (DoD), the Strategic Environmental Research and Development Program (SERDP), began funding four desktop review projects in 2018.

View Article and Find Full Text PDF

Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants that are coming under increasing scrutiny. Currently, there is a paucity of effects data for marine aquatic life, limiting the assessment of ecological risks and compliance with water quality policies. In the present study, the toxicity of perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) to four standard marine laboratory toxicity testing species, encompassing five endpoints, were evaluated: 1) 96-h embryo-larval normal development for the purple sea urchin (Strongylocentrotus purpuratus); 2) 48-h embryo-larval normal development and normal survival for the Mediterranean mussel (Mytilus galloprovincialis); 3) 96-h survival of opossum shrimp (Americamysis bahia); and 4) 24-h light output for the bioluminescent dinoflagellate Pyrocystis lunula.

View Article and Find Full Text PDF

Irrigation water or soil contaminated with per- and polyfluoroalkyl substances (PFASs) raises concerns among regulators tasked with protecting human health from potential PFAS-contaminated food crops, with several studies identifying crop uptake as an important exposure pathway. We estimated daily dietary exposure intake of individual PFASs in vegetables for children and adults using Monte Carlo simulation in a tiered stochastic modeling approach: exposures were the highest for young children (1-2 years > adults > 3-5 years > 6-11 years > 12-19 years). Using the lowest available human health toxicity reference values (RfDs) and no additional exposure, estimated fifth percentile risk-based threshold concentrations in irrigation water were 38 ng/L (median 180 ng/L) for perfluorooctanoate (PFOA) and 140 ng/L (median 850 ng/L) for perfluorooctane sulfonate (PFOS).

View Article and Find Full Text PDF

Releases of Perfluoroalkyl and Polyfluoroalkyl Substances (PFASs) associated with Aqueous Film Forming Foams (AFFFs) have the potential to impact on-site and downgradient aquatic habitats. Dietary exposures of aquatic-dependent birds were modeled for seven PFASs (PFHxA, PFOA, PFNA, PFDA, PFHxS, PFOS, and PFDS) using five different scenarios based on measurements of PFASs obtained from five investigations of sites historically-impacted by AFFF. Exposure modeling was conducted for four avian receptors representing various avian feeding guilds: lesser scaup (Aythya affinis), spotted sandpiper (Actitis macularia), great blue heron (Ardea herodias), and osprey (Pandion haliaetus).

View Article and Find Full Text PDF

In situ amendment of surface sediment with activated carbon is a promising technique for reducing the availability of hydrophobic organic compounds in surface sediment. The present study evaluated the performance of a logistically challenging activated carbon placement in a high-energy hydrodynamic environment adjacent to and beneath a pier in an active military harbor. Measurements conducted preamendment and 10, 21, and 33 months (mo) postamendment using in situ exposures of benthic invertebrates and passive samplers indicated that the targeted 4% (by weight) addition of activated carbon (particle diameter ≤74 µm) in the uppermost 10 cm of surface sediment reduced polychlorinated biphenyl availability by an average (± standard deviation) of 81 ± 11% in the first 10 mo after amendment.

View Article and Find Full Text PDF

Field-based studies are an essential component of research addressing the behavior of organic chemicals, and a unique line of evidence that can be used to assess bioaccumulation potential in chemical registration programs and aid in development of associated laboratory and modeling efforts. To aid scientific and regulatory discourse on the application of terrestrial field data in this manner, this article provides practical recommendations regarding the generation and interpretation of terrestrial field data. Currently, biota-to-soil-accumulation factors (BSAFs), biomagnification factors (BMFs), and bioaccumulation factors (BAFs) are the most suitable bioaccumulation metrics that are applicable to bioaccumulation assessment evaluations and able to be generated from terrestrial field studies with relatively low uncertainty.

View Article and Find Full Text PDF

Sediment quality values (SQV) are commonly used-and misused-to characterize the need for investigation, understand causes of observed effects, and derive management strategies to protect benthic invertebrates from direct toxic effects. The authors compiled more than 40 SQVs for mercury, nearly all of which are "co-occurrence" SQVs derived from databases of paired chemistry and benthic invertebrate effects data obtained from field-collected sediment. Co-occurrence SQVs are not derived in a manner that reflects cause-effect, concentration-response relationships for individual chemicals such as mercury, because multiple potential stressors often co-occur in the data sets used to derive SQVs.

View Article and Find Full Text PDF

The primary aim of this article is to provide an overview of perfluoroalkyl and polyfluoroalkyl substances (PFASs) detected in the environment, wildlife, and humans, and recommend clear, specific, and descriptive terminology, names, and acronyms for PFASs. The overarching objective is to unify and harmonize communication on PFASs by offering terminology for use by the global scientific, regulatory, and industrial communities. A particular emphasis is placed on long-chain perfluoroalkyl acids, substances related to the long-chain perfluoroalkyl acids, and substances intended as alternatives to the use of the long-chain perfluoroalkyl acids or their precursors.

View Article and Find Full Text PDF

Recent reviews by researchers from academia, industry, and government have revealed that the criteria used by the Stockholm Convention on persistent organic pollutants under the United Nations Environment Programme are not always able to identify the actual bioaccumulative capacity of some substances, by use of chemical properties such as the octanol-water partitioning coefficient. Trophic magnification factors (TMFs) were suggested as a more reliable tool for bioaccumulation assessment of chemicals that have been in commerce long enough to be quantitatively measured in environmental samples. TMFs are increasingly used to quantify biomagnification and represent the average diet-to-consumer transfer of a chemical through food webs.

View Article and Find Full Text PDF

Recent technical workgroups have concluded that trophic magnification factors (TMFs) are useful in characterizing the bioaccumulation potential of a chemical, because TMFs provide a holistic measure of biomagnification in food webs. The objectives of this article are to provide a critical analysis of the application of TMFs for regulatory screening for bioaccumulation potential, and to discuss alternative methods for supplementing TMFs and assessing biomagnification in cases where insufficient data are available to determine TMFs. The general scientific consensus is that chemicals are considered bioaccumulative if they exhibit a TMF > 1.

View Article and Find Full Text PDF

This article provides a review of thin-layer placement applications to enhance the natural recovery of contaminated sediment. Three principal case studies are presented in which thin-layer placement has been implemented as a component of enhanced monitored natural recovery (EMNR). EMNR is defined as the application of engineered means such as thin-layer placement or broadcasting of capping material to accelerate natural recovery processes in locations not appropriate for application of monitored natural recovery (MNR) alone.

View Article and Find Full Text PDF

As part of a comprehensive ecological risk assessment on a broad range of species, the potential for adverse effects in birds was evaluated at a chromate ore processing residue disposal site, Study Area 7, located at the confluence of the Lower Hackensack River, Passaic River, and Upper Newark Bay. Although detection of elevated concentrations of total chromium in sediment prompted the study, it was also necessary to consider potential risks related to other chemicals present in elevated concentrations due to widespread anthropogenic activities in Upper Newark Bay and its watershed. U.

View Article and Find Full Text PDF

Perfluorinated acids, including perfluorinated carboxylates (PFCAs), and perfluorinated sulfonates (PFASs), are environmentally persistent and have been detected in a variety of wildlife across the globe. The most commonly detected PFAS, perfluorooctane sulfonate (PFOS), has been classified as a persistent and bioaccumulative substance. Similarities in chemical structure and environmental behavior of PFOS and the PFCAs that have been detected in wildlife have generated concerns about the bioaccumulation potential of PFCAs.

View Article and Find Full Text PDF

A Sediment Quality Triad (SQT) study consisting of chemical characterization in sediment, sediment toxicity and bioaccumulation testing, and benthic community assessments was performed in the Lower Hackensack River, New Jersey. Chemistry data in sediment and porewater were evaluated based on the equilibrium partitioning approach and other published information to investigate the potential for chemical effects on benthic organisms and communities. Relationships were supported by laboratory toxicity and bioaccumulation experiments to characterize chemical effects and bioavailability.

View Article and Find Full Text PDF

Tubifex tubifex metabolizes 2,4,6-trinitrotoluene (TNT) to 2-amino-4,6-dinitrotoluene (2ADNT) and 4-amino-2,6-dinitrotoluene (4ADNT). Elimination rates of metabolically-generated ADNTs are low compared to ADNTs absorbed directly from water, suggesting that metabolically-generated ADNTs may be bound or sequestered within tissue and therefore less available for elimination. A solid phase microextraction (SPME) technique was used to extract ADNTs from T.

View Article and Find Full Text PDF

Disposable solid-phase microextraction fibers (SPMEs) were used to measure the availability of 2,4,6-trinitrotoluene (TNT) and its two primary transformation products, 2-amino-4,6-dinitrotoluene (2ADNT) and 4-amino-2,6-dinitrotoluene (4ADNT). The SPMEs (85-microm polyacrylate) and sediment-dwelling oligochaetes (Tubifex tubifex) were exposed to TNT-spiked sediment, to TNT-spiked sediment amended with activated carbon, and to TNT-, 2ADNT-, and 4ADNT-spiked water. Sediment concentration was a poor predictor of bioavailability in unamended and carbon-amended sediments (r2 = 0.

View Article and Find Full Text PDF

We examined the toxicokinetics and metabolism of 2,4,6-trinitirotoluene (TNT) and four of its major reduced metabolites (2-amino-4,6-dinitrotoluene (2ADNT), 4-amino-2,6-dinitrotoluene (4ADNT), and 2,4-diamino-6-nitrotoluene (2,4DANT)) in the freshwater, aquatic oligochaete Tubifex tubifex exposed to spiked, reconstituted water. In uptake experiments with each compound, steady state concentrations were reached within 1h, and all absorbed compounds were completely eliminated in 0-3 h. The appearance of 2ADNT and 4ADNT (from metabolism of absorbed TNT) was five times slower, reaching 95% of steady state in 14.

View Article and Find Full Text PDF