Publications by authors named "Jason Chibuk"

Objective: To validate the performance of a novel, integrated test for canine cancer screening that combines cell-free DNA quantification with next-generation sequencing (NGS) analysis.

Sample: Retrospective data from a total of 1,947 cancer-diagnosed and presumably cancer-free dogs were used to validate test performance for the detection of 7 predefined cancer types (lymphoma, hemangiosarcoma, osteosarcoma, leukemia, histiocytic sarcoma, primary lung tumors, and urothelial carcinoma), using independent training and testing sets.

Methods: Cell-free DNA quantification data from all samples were analyzed using a proprietary machine learning algorithm to determine a Cancer Probability Index (High, Moderate, or Low).

View Article and Find Full Text PDF

Objective: The purpose of this study was to evaluate the performance of a next-generation sequencing-based liquid biopsy test for cancer monitoring in dogs.

Samples: Pre- and postoperative blood samples were collected from dogs with confirmed cancer diagnoses originally enrolled in the CANcer Detection in Dogs (CANDiD) study. A subset of dogs also had longitudinal blood samples collected for recurrence monitoring.

View Article and Find Full Text PDF

Age-related somatic genomic alterations in hematopoietic cell lines have been well characterized in humans; however, this phenomenon has not been well studied in other species. Next-generation sequencing-based liquid biopsy testing for cancer detection was recently developed for dogs and has been used to study the genomic profiles of blood samples from thousands of canine patients since 2021. In this study, 4870 client-owned dogs with and without a diagnosis or suspicion of cancer underwent liquid biopsy testing by this method.

View Article and Find Full Text PDF

Objective: To review ordering patterns, positivity rates, and outcome data for a subset of consecutive samples submitted for a commercially available, blood-based multicancer early-detection liquid biopsy test for dogs using next-generation sequencing at 1 laboratory.

Sample: 1,500 consecutively submitted blood samples from client-owned dogs with and without clinical suspicion and/or history of cancer for prospective liquid biopsy testing between December 28, 2021, and June 28, 2022.

Procedures: We performed a retrospective observational study, reviewing data from 1,500 consecutive clinical samples submitted for liquid biopsy testing.

View Article and Find Full Text PDF

The goal of cancer screening is to detect disease at an early stage when treatment may be more effective. Cancer screening in dogs has relied upon annual physical examinations and routine laboratory tests, which are largely inadequate for detecting preclinical disease. With the introduction of non-invasive liquid biopsy cancer detection methods, the discussion is shifting from how to screen dogs for cancer to when to screen dogs for cancer.

View Article and Find Full Text PDF

Background: Guidelines-driven screening protocols for early cancer detection in dogs are lacking, and cancer often is detected at advanced stages.

Hypothesis/objectives: To examine how cancer typically is detected in dogs and whether the addition of a next-generation sequencing-based "liquid biopsy" test to a wellness visit has the potential to enhance cancer detection.

Animals: Client-owned dogs with definitive cancer diagnoses enrolled in a clinical validation study for a novel blood-based multicancer early detection test.

View Article and Find Full Text PDF

Cancer is the leading cause of death in dogs, yet there are no established screening paradigms for early detection. Liquid biopsy methods that interrogate cancer-derived genomic alterations in cell-free DNA in blood are being adopted for multi-cancer early detection in human medicine and are now available for veterinary use. The CANcer Detection in Dogs (CANDiD) study is an international, multi-center clinical study designed to validate the performance of a novel multi-cancer early detection "liquid biopsy" test developed for noninvasive detection and characterization of cancer in dogs using next-generation sequencing (NGS) of blood-derived DNA; study results are reported here.

View Article and Find Full Text PDF

This proof-of-concept study demonstrates that blood-based liquid biopsy using next generation sequencing of cell-free DNA can non-invasively detect multiple classes of genomic alterations in dogs with cancer, including alterations that originate from spatially separated tumor sites. Eleven dogs with a variety of confirmed cancer diagnoses (including localized and disseminated disease) who were scheduled for surgical resection, and five presumably cancer-free dogs, were enrolled. Blood was collected from each subject, and multiple spatially separated tumor tissue samples were collected during surgery from 9 of the cancer subjects.

View Article and Find Full Text PDF

Cancer is the leading cause of death in dogs, in part because many cases are identified at an advanced stage when clinical signs have developed, and prognosis is poor. Increased understanding of cancer as a disease of the genome has led to the introduction of liquid biopsy testing, allowing for detection of genomic alterations in cell-free DNA fragments in blood to facilitate earlier detection, characterization, and management of cancer through non-invasive means. Recent discoveries in the areas of genomics and oncology have provided a deeper understanding of the molecular origins and evolution of cancer, and of the "one health" similarities between humans and dogs that underlie the field of comparative oncology.

View Article and Find Full Text PDF

Purpose: Pregnant women have unprecedented choices for prenatal screening and testing. Cell-free DNA (cfDNA) offers the option to screen for aneuploidy of all chromosomes and genome-wide copy-number variants (CNVs), expanding screening beyond the common trisomies ("traditional" cfDNA). We sought to review the utilization trends and clinical performance characteristics of a commercially available genome-wide cfDNA test, with a subset having available diagnostic testing outcomes.

View Article and Find Full Text PDF

Objective: Outcome data from cell-free DNA (cfDNA) screening in twin gestations are limited. This study adds an appreciable number of confirmed outcomes to the literature, and assesses performance of cfDNA screening in twins over a 4.5-year period at one large clinical laboratory.

View Article and Find Full Text PDF

Since introducing cell-free DNA screening, Sequenom Laboratories has analyzed over 1 million clinical samples. More than 30,000 of these samples were from multifetal gestations (including twins, triplets and higher-order multiples). The clinical laboratory experience with the first 30,000 multifetal samples will be discussed.

View Article and Find Full Text PDF

PurposeInvasive diagnostic prenatal testing can provide the most comprehensive information about the genetic status of a fetus. Noninvasive prenatal screening methods, especially when using cell-free DNA (cfDNA), are often limited to reporting only on trisomies 21, 18, and 13 and sex chromosome aneuploidies. This can leave a significant number of chromosomal and subchromosomal copy-number variations undetected.

View Article and Find Full Text PDF

The purpose of this article was to discuss the process of setting up a nuchal translucency (NT) screening clinic in clinical practice, how to interpret the information in combination with other clinical tests, what to do if abnormal results are obtained, and to illustrate some of the fetal anomalies that are associated with an increased NT. The NT was initially implemented to predict the likelihood of a fetus with Down syndrome. Maternal age can be combined with fetal NT and maternal serum biochemistry (free β-hCG and PAPP-A) at 11 to 14 weeks to identify about 90% of affected fetuses.

View Article and Find Full Text PDF
Article Synopsis
  • Hereditary haemorrhagic telangiectasia (HHT) is an inherited disorder caused by mutations in specific genes (ACVRL1, ENG, SMAD4) and is characterized by abnormal blood vessel formations.
  • Patients typically display small arteriovenous malformations (AVMs) on the skin and in the gastrointestinal tract, along with larger AVMs in vital organs like the lungs and brain, but symptoms can vary widely.
  • The report highlights two unique cases of patients with no family history of HHT, who are mosaic for gene mutations and emphasize the importance of recognizing genetic mosaicism in diagnosing and testing for HHT.
View Article and Find Full Text PDF

Objective: The purpose of this study was to assess the impact of 3-/4-dimensional ultrasonography (3D/4DUS) on parental impressions of their fetus using preexamination and postexamination parental drawings.

Methods: One hundred one parents (32 male and 69 female) were asked to draw pictures of their fetus immediately before and after undergoing 3D/4DUS. A drawing assessment instrument was used to evaluate the fetal anatomy by 4 reviewers.

View Article and Find Full Text PDF