This study examines the impact of the 1994 IMF-supported CFA franc devaluation on GDP per capita in the CFA-franc zone using the augmented synthetic control methodology. With the exception of Mali, there is no statistical evidence that GDP per capita levels rose relative to what they would have been in the absence of the IMF-supported devaluation. Three countries record statistically significant GDP per capita levels below the counterfactual following the devaluation, though these countries experienced a deterioration of their national institutional environment or were affected by external factors that offset any potential gains from the devaluation.
View Article and Find Full Text PDFFull activity of soluble methane monooxygenase (sMMO) depends upon the formation of a 1:1 complex of the regulatory protein MMOB with each alpha subunit of the (αβγ) hydroxylase, sMMOH. Previous studies have shown that mutations in the core region of MMOB and in the N- and C-termini cause dramatic changes in the rate constants for steps in the sMMOH reaction cycle. Here, X-ray crystal structures are reported for the sMMOH complex with two double variants within the core region of MMOB, DBL1 (N107G/S110A), and DBL2 (S109A/T111A), as well as two variants in the MMOB N-terminal region, H33A and H5A.
View Article and Find Full Text PDFSoluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme capable of catalyzing the fissure of the C-H bond of methane and the insertion of one atom of oxygen from O to yield methanol. Efficient multiple-turnover catalysis occurs only in the presence of all three sMMO protein components: hydroxylase (MMOH), reductase (MMOR), and regulatory protein (MMOB). The complex series of sMMO protein component interactions that regulate the formation and decay of sMMO reaction cycle intermediates is not fully understood.
View Article and Find Full Text PDFWe present the first report of biotransformation of 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN), replacements for the explosives 1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT), respectively, by methane-oxidizing cultures under aerobic conditions. Two consortia, dominated by Methylosinus spp., degraded both compounds with transient production of reduced NTO products, and non-stoichiometric production of reduced DNAN products.
View Article and Find Full Text PDFThe metalloenzyme soluble methane monooxygenase (sMMO) consists of hydroxylase (sMMOH), regulatory (MMOB), and reductase components. When sMMOH forms a complex with MMOB, the rate constants are greatly increased for the sequential access of O, protons, and CH to an oxygen-bridged diferrous metal cluster located in the buried active site. Here, we report high-resolution X-ray crystal structures of the diferric and diferrous states of both sMMOH and the sMMOH:MMOB complex using the components from OB3b.
View Article and Find Full Text PDFSoluble methane monooxygenase (sMMO) is a multicomponent metalloenzyme that catalyzes the conversion of methane to methanol at ambient temperature using a nonheme, oxygen-bridged dinuclear iron cluster in the active site. Structural changes in the hydroxylase component (sMMOH) containing the diiron cluster caused by complex formation with a regulatory component (MMOB) and by iron reduction are important for the regulation of O activation and substrate hydroxylation. Structural studies of metalloenzymes using traditional synchrotron-based X-ray crystallography are often complicated by partial X-ray-induced photoreduction of the metal center, thereby obviating determination of the structure of the enzyme in pure oxidation states.
View Article and Find Full Text PDFAerobic life is possible because the molecular structure of oxygen (O) makes direct reaction with most organic materials at ambient temperatures an exceptionally slow process. Of course, these reactions are inherently very favorable, and they occur rapidly with the release of a great deal of energy at high temperature. Nature has been able to tap this sequestered reservoir of energy with great spatial and temporal selectivity at ambient temperatures through the evolution of oxidase and oxygenase enzymes.
View Article and Find Full Text PDFNanoparticles resistant to salt-induced aggregation are continually being developed for biomedical and industrial applications. Because of their colloidal stability these functionalized nanoparticles are anticipated to be persistent aquatic contaminants. Here, we show that Corbicula fluminea, a globally distributed clam that is a known sentinel of aquatic ecosystem contamination, can uptake and biodeposit bovine serum albumin (BSA) stabilized gold nanoparticles.
View Article and Find Full Text PDFWe have investigated the efficiency of bifunctional pattern formation in alkanethiolate self-assembled monolayers (SAMs) adsorbed on GaAs (001) and Au, using time-of-flight secondary ion mass spectrometry. Two patterning techniques were employed: electron beam lithography and UV photopatterning. Previous work has always assumed that complete degradation of the SAM was necessary for the formation of well-defined multifunctional patterned surfaces, requiring large electron doses or long UV irradiation times.
View Article and Find Full Text PDFInfrared spectroscopic ellipsometry was used for determination of molecular orientation and for lateral homogeneity studies of organic monolayers on GaAs and Au, the organic layer being either octanedithiol or hexadecanethiol (HDT). The laterally resolved measurements were performed with the infrared mapping ellipsometer at the synchrotron storage ring BESSY II. The molecular orientation within the monolayers was determined by optical model simulations of the measured ellipsometric spectra.
View Article and Find Full Text PDF