Engineering three-dimensional (3D) scaffolds with in vivo like architecture and function has shown great potential for tissue regeneration. Here we developed a facile microfluidic-based strategy for the continuous fabrication of cell-laden microfibers with hierarchically organized architecture. We show that photolithographically fabricated microfluidic devices offer a simple and reliable way to create anatomically inspired complex structures.
View Article and Find Full Text PDFBackground: DNA repair mechanisms are crucial for maintenance of the genome in all organisms, including parasites where successful infection is dependent both on genomic stability and sequence variation. MSH2 is an early acting, central component of the Mismatch Repair (MMR) pathway, which is responsible for the recognition and correction of base mismatches that occur during DNA replication and recombination. In addition, recent evidence suggests that MSH2 might also play an important, but poorly understood, role in responding to oxidative damage in both African and American trypanosomes.
View Article and Find Full Text PDF