Understanding human genetic diversity in Africa is important for interpreting the evolution of all humans, yet vast regions in Africa, such as Chad, remain genetically poorly investigated. Here, we use genotype data from 480 samples from Chad, the Near East, and southern Europe, as well as whole-genome sequencing from 19 of them, to show that many populations today derive their genomes from ancient African-Eurasian admixtures. We found evidence of early Eurasian backflow to Africa in people speaking the unclassified isolate Laal language in southern Chad and estimate from linkage-disequilibrium decay that this occurred 4,750-7,200 years ago.
View Article and Find Full Text PDFThe biological role of the mitochondrial DNA (mtDNA) control region in mtDNA replication remains unclear. In a worldwide survey of mtDNA variation in the general population, we have identified a novel large control region deletion spanning positions 16154 to 16307 (m.16154_16307del154).
View Article and Find Full Text PDFThe quest to explain demographic history during the early part of human evolution has been limited because of the scarce paleoanthropological record from the Middle Stone Age. To shed light on the structure of the mitochondrial DNA (mtDNA) phylogeny at the dawn of Homo sapiens, we constructed a matrilineal tree composed of 624 complete mtDNA genomes from sub-Saharan Hg L lineages. We paid particular attention to the Khoi and San (Khoisan) people of South Africa because they are considered to be a unique relic of hunter-gatherer lifestyle and to carry paternal and maternal lineages belonging to the deepest clades known among modern humans.
View Article and Find Full Text PDFLebanon is an eastern Mediterranean country inhabited by approximately four million people with a wide variety of ethnicities and religions, including Muslim, Christian, and Druze. In the present study, 926 Lebanese men were typed with Y-chromosomal SNP and STR markers, and unusually, male genetic variation within Lebanon was found to be more strongly structured by religious affiliation than by geography. We therefore tested the hypothesis that migrations within historical times could have contributed to this situation.
View Article and Find Full Text PDFThe Genographic Project is studying the genetic signatures of ancient human migrations and creating an open-source research database. It allows members of the public to participate in a real-time anthropological genetics study by submitting personal samples for analysis and donating the genetic results to the database. We report our experience from the first 18 months of public participation in the Genographic Project, during which we have created the largest standardized human mitochondrial DNA (mtDNA) database ever collected, comprising 78,590 genotypes.
View Article and Find Full Text PDF