In the last 10 years the availability of the genome sequence of Anopheles gambiae and the development of a transgenic technology for several species of Anopheles mosquitoes have, in combination, helped in enabling us to gain several insights into the biology of these mosquitoes that is relevant to their capacity as vectors of the malaria parasite. While this information is anticipated to inform many novel vector control strategies, the technique most likely to benefit in the near future from the availability of a reliable transgenic technology is the sterile insect technique (SIT), which relies on releasing large numbers of sterile insects to compete for mates in the wild, leading to population suppression. Although SIT has been proven to work reliably for many insects, the construction of suitable strains, and induction of sterility, has until now been a laborious process, combining classical genetics with radiation-induced sterility.
View Article and Find Full Text PDFGenetic manipulation of mosquito species that serve as vectors for human malaria is a prerequisite to the implementation of gene transfer technologies for the control of vector-borne diseases. Here we report on the development of transgenic sexing lines for the mosquito Anopheles stephensi, the principal vector of human malaria in Asia. Male mosquitoes, expressing enhanced green fluorescent protein (EGFP) under the control of the beta2-tubulin promoter, are identified by their fluorescent gonads in as early as their 3(rd) instar larval stage, and can be efficiently separated from females using both manual methods and automated sorting machines.
View Article and Find Full Text PDFDespite being cloned several years ago, the expression of functional nicotinic acetylcholine receptors containing the human alpha6 subunit in recombinant mammalian cell lines has yet to be demonstrated. The resulting lack of selective ligands has hindered the evaluation of the role of alpha6-containing nicotinic receptors. We report that functional channels were recorded following co-transfection of human embryonic kidney (HEK-293) cells with a chimeric alpha6/alpha4 subunit and the beta4 nicotinic receptor subunit.
View Article and Find Full Text PDF