Publications by authors named "Jason B Warner"

Article Synopsis
  • This study discusses a new method for enriching specific segments of the human genome using microdroplet PCR, allowing for simultaneous amplification of 1.5 million DNA samples.
  • The researchers compared this method to traditional singleplex PCR, finding that both produced high-quality sequencing data with over 84% of unique reads aligning to the target sequences and >99% accuracy in identifying genetic variants.
  • They successfully scaled the microdroplet PCR method to target nearly 4,000 amplicons and confirmed its effectiveness using two sequencing technologies, highlighting its potential for large-scale genetic studies.
View Article and Find Full Text PDF

Background: Calorie restriction (CR) is the only intervention known to extend lifespan in a wide range of organisms, including mammals. However, the mechanisms by which it regulates mammalian aging remain largely unknown, and the involvement of the TOR and sirtuin pathways (which regulate aging in simpler organisms) remain controversial. Additionally, females of most mammals appear to live longer than males within species; and, although it remains unclear whether this holds true for mice, the relationship between sex-biased and CR-induced gene expression remains largely unexplored.

View Article and Find Full Text PDF

Forward genetic mutational studies, adaptive evolution, and phenotypic screening are powerful tools for creating new variant organisms with desirable traits. However, mutations generated in the process cannot be easily identified with traditional genetic tools. We show that new high-throughput, massively parallel sequencing technologies can completely and accurately characterize a mutant genome relative to a previously sequenced parental (reference) strain.

View Article and Find Full Text PDF

We developed an algorithm, Lever, that systematically maps metazoan DNA regulatory motifs or motif combinations to sets of genes. Lever assesses whether the motifs are enriched in cis-regulatory modules (CRMs), predicted by our PhylCRM algorithm, in the noncoding sequences surrounding the genes. Lever analysis allows unbiased inference of functional annotations to regulatory motifs and candidate CRMs.

View Article and Find Full Text PDF

Mannose phosphorylation of N-linked oligosaccharides by UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine-1-phosphotransferase is a key step in the targeting of lysosomal enzymes in mammalian cells and tissues. The selectivity of this process is determined by lysine-based phosphorylation signals shared by lysosomal enzymes of diverse structure and function. By introducing new glycosylation sites at several locations on the surface of mouse procathepsin L and modeling oligosaccharide conformations for sites that are phosphorylated, it was shown that the inherent flexibility of N-linked oligosaccharides can account for the specificity of the transferase for oligosaccharides at different locations on the protein.

View Article and Find Full Text PDF