Publications by authors named "Jason Argyris"

Melon is an economically important crop with widely diverse fruit morphology and ripening characteristics. Its diploid sequenced genome and multiple genomic tools make this species suitable to study the genetic architecture of fruit traits. With the development of this introgression line population of the elite varieties 'Piel de Sapo' and 'Védrantais', we present a powerful tool to study fruit morphology and ripening traits that can also facilitate characterization or pyramidation of QTLs in melon types.

View Article and Find Full Text PDF

Background: Cannabis sativa is a primarily dioecious angiosperm that exhibits sexual developmental plasticity. Developmental genes for staminate male flowers have yet to be elucidated; however, there are regions of male-associated DNA from Cannabis (MADC) that correlate with the formation of pollen producing staminate flowers. MADC2 is an example of a PCR-based genetic marker that has been shown to produce a 390-bp amplicon that correlates with the expression of male phenotypes.

View Article and Find Full Text PDF

Introgression lines are valuable germplasm for scientists and breeders, since they ease genetic studies such as QTL interactions and positional cloning as well as the introduction of favorable alleles into elite varieties. We developed a novel introgression line collection in melon using two commercial European varieties with different ripening behavior, the climacteric cantalupensis 'Védrantais' as recurrent parent and the non-climacteric inodorus 'Piel de Sapo' as donor parent. The collection contains 34 introgression lines, covering 99% of the donor genome.

View Article and Find Full Text PDF

Melon is as an alternative model to understand fruit ripening due to the coexistence of climacteric and non-climacteric varieties within the same species, allowing the study of the processes that regulate this complex trait with genetic approaches. We phenotyped a population of recombinant inbred lines (RILs), obtained by crossing a climacteric (Védrantais, cantalupensis type) and a non-climcteric variety (Piel de Sapo T111, inodorus type), for traits related to climacteric maturation and ethylene production. Individuals in the RIL population exhibited various combinations of phenotypes that differed in the amount of ethylene produced, the early onset of ethylene production, and other phenotypes associated with ripening.

View Article and Find Full Text PDF

Melon is an economically important fruit crop that has been cultivated for thousands of years; however, the genetic basis and history of its domestication still remain largely unknown. Here we report a comprehensive map of the genomic variation in melon derived from the resequencing of 1,175 accessions, which represent the global diversity of the species. Our results suggest that three independent domestication events occurred in melon, two in India and one in Africa.

View Article and Find Full Text PDF

Fleshy fruits using ethylene to regulate ripening have developed multiple times in the history of angiosperms, presenting a clear case of convergent evolution whose molecular basis remains largely unknown. Analysis of the fruitENCODE data consisting of 361 transcriptome, 71 accessible chromatin, 147 histone and 45 DNA methylation profiles reveals three types of transcriptional feedback circuits controlling ethylene-dependent fruit ripening. These circuits are evolved from senescence or floral organ identity pathways in the ancestral angiosperms either by neofunctionalisation or repurposing pre-existing genes.

View Article and Find Full Text PDF

Sugar content is the major determinant of both fruit quality and consumer acceptance in melon ( L), and is a primary target for crop improvement. Near-isogenic lines (NILs) derived from the intraspecific cross between a "Piel de Sapo" (PS) type and the exotic cultivar "Songwhan Charmi" (SC), and several populations generated from the cross of PS × Ames 24294 ("Trigonus"), a wild melon, were used to identify QTL related to sugar and organic acid composition. Seventy-eight QTL were detected across several locations and different years, with three important clusters related to sugar content located on chromosomes 4, 5, and 7.

View Article and Find Full Text PDF

Fruit ripening is divided into climacteric and non-climacteric types depending on the presence or absence of a transient rise in respiration rate and the production of autocatalytic ethylene. Melon is ideal for the study of fruit ripening, as both climacteric and non-climacteric varieties exist. Two introgressions of the non-climacteric accession PI 161375, encompassed in the QTLs ETHQB3.

View Article and Find Full Text PDF

The availability of the genome sequence of many crop species during the past few years has opened a new era in plant biology, allowing for the performance of massive genomic studies in plant species other than the classical models Arabidopsis and rice. One of these crop species is melon (Cucumis melo), a cucurbit of high economic value that has become an interesting model for the study of biological processes such as fruit ripening, sex determination and phloem transport. The recent availability of the melon genome sequence, together with a number of genetic and genomic resources, provides powerful tools that can be used to assist in the main melon breeding targets, namely disease resistance and fruit quality.

View Article and Find Full Text PDF

Thermoinhibition, or failure of seeds to germinate when imbibed at warm temperatures, can be a significant problem in lettuce (Lactuca sativa L.) production. The reliability of stand establishment would be improved by increasing the ability of lettuce seeds to germinate at high temperatures.

View Article and Find Full Text PDF

Lettuce (Lactuca sativa 'Salinas') seeds fail to germinate when imbibed at temperatures above 25 degrees C to 30 degrees C (termed thermoinhibition). However, seeds of an accession of Lactuca serriola (UC96US23) do not exhibit thermoinhibition up to 37 degrees C in the light. Comparative genetics, physiology, and gene expression were analyzed in these genotypes to determine the mechanisms governing the regulation of seed germination by temperature.

View Article and Find Full Text PDF

Seed and seedling traits related to germination and stand establishment are important in the production of cultivated lettuce (Lactuca sativa L.). Six seed and seedling traits segregating in a L.

View Article and Find Full Text PDF

Wild populations of common sunflower (Helianthus annuus L.) are self-incompatible and have deep seed dormancy, whereas modern cultivars, inbreds, and hybrids are self-compatible and partially-to-strongly self-pollinated, and have shallow seed dormancy. Self-pollination (SP) and seed dormancy are genetically complex traits, the number of self-compatibility (S) loci has been disputed, and none of the putative S loci have been genetically mapped in sunflower.

View Article and Find Full Text PDF