J Chem Theory Comput
October 2023
Machine learning force fields (MLFFs) are an increasingly popular choice for atomistic simulations due to their high fidelity and improvable nature. Here we propose a hybrid small-cell approach that combines attributes of both offline and active learning to systematically expand a quantum-mechanical (QM) database while constructing MLFFs with increasing model complexity. Our MLFFs employ the moment tensor potential formalism.
View Article and Find Full Text PDF