This work introduces a formalism for computing external acoustic scattering from phononic crystals (PCs) with arbitrary exterior shape using a Bloch wave expansion technique coupled with the Helmholtz-Kirchhoff integral (HKI). Similar to a Kirchhoff approximation, a geometrically complex PC's surface is broken into a set of facets in which the scattering from each facet is calculated as if it was a semi-infinite plane interface in the short wavelength limit. When excited by incident radiation, these facets introduce wave modes into the interior of the PC.
View Article and Find Full Text PDFExternal scattering from a finite phononic crystal (PC) is studied using the Helmholtz-Kirchhoff integral theorem integrated with a Bloch wave expansion (BWE). The BWE technique is used to describe the internal pressure field of a semi-infinite or layered PC subject to an incident monochromatic plane wave. Following the BWE solution, the Helmholtz-Kirchhoff integral is used to determine the external scattered field.
View Article and Find Full Text PDFIn this paper acoustic wave reflection and transmission are studied at the interface between a phononic crystal (PC) and a homogeneous medium using a Bloch wave expansion technique. A finite element analysis of the PC yields the requisite dispersion relationships and a complete set of Bloch waves, which in turn are employed to expand the transmitted pressure field. A solution for the reflected and transmitted wave fields is then obtained using continuity conditions at the half-space interface.
View Article and Find Full Text PDFA multi-scale homogenization technique and a finite element-based solution procedure are employed to compute acoustic absorption in smooth and rough packed microtubes. The absorption considered arises from thermo-viscous interactions between the fluid media and the microtube walls. The homogenization technique requires geometric periodicity, which for smooth tubes is invoked using the periodicity of the finite element mesh; for rough microtubes, the periodicity invoked is that associated with the roughness.
View Article and Find Full Text PDF