Exposure to thalidomide during a critical window of development results in limb defects in humans and non-human primates while mice and rats are refractory to these effects. Thalidomide-induced teratogenicity is dependent on its binding to cereblon (CRBN), the substrate receptor of the Cul4A-DDB1-CRBN-RBX1 E3 ubiquitin ligase complex. Thalidomide binding to CRBN elicits subsequent ubiquitination and proteasomal degradation of CRBN neosubstrates including SALL4, a transcription factor of which polymorphisms phenocopy thalidomide-induced limb defects in humans.
View Article and Find Full Text PDFThe myelin sheath insulates axons and allows for rapid salutatory conduction in the nervous system of all vertebrates. The formation of peripheral myelin requires expression of the transcription factor Egr2, which is responsible for inducing such essential myelin-associated genes as Mpz, Mbp, Pmp22, and Mag. Using microarray analysis to compare gene expression patterns in peripheral nerve during development, during remyelination after nerve injury, and in a congenital hypomyelinating mouse model, we identified an evolutionarily conserved novel component of myelin called Mp11 (myelin protein of 11 kDa).
View Article and Find Full Text PDFPou3f1/SCIP/Oct-6 is a POU-domain transcription factor that is an important regulator of peripheral nerve myelination by Schwann cells. Pou3f1-deficient mice experience a developmental delay in myelination indicating that transient induction of Pou3f1 is required for normal development of peripheral myelin. The mechanism by which Pou3f1 regulates myelination is unclear, because it can both increase expression of Egr2, a transcription factor that promotes the myelination program, and also repress the promoters of specific myelin genes such as myelin protein zero (MPZ) and myelin basic protein (MBP).
View Article and Find Full Text PDFGlial cell derived neurotrophic factor (GDNF)-dependent receptor tyrosine kinase RET activity is required for proper development of the nervous system and genitourinary tract. Loss-of-function mutations in RET are associated with enteric nervous system abnormalities (Hirschsprung disease) and renal deficits (Potter's syndrome), whereas activating mutations lead to hereditary cancer syndromes (multiple endocrine neoplasia type 2A and type 2B). RET activation is crucial for the proper regulation of a variety of cellular processes including cell migration, proliferation and neurite outgrowth.
View Article and Find Full Text PDFNF-kappaB is a family of transcription factors important for innate and adaptive immunity. NF-kappaB is restricted to the cytoplasm by inhibitory proteins that are degraded when specifically phosphorylated, permitting NF-kappaB to enter the nucleus and activate target genes. Phosphorylation of the inhibitory proteins is mediated by an IkappaB kinase (IKK) complex, which can be composed of two subunits with enzymatic activity, IKKalpha and IKKbeta.
View Article and Find Full Text PDFTumor necrosis factor (TNF) promotes immunity and modulates cell viability, in part, by promoting alterations of cellular gene expression. The mechanisms through which TNF communicates with the nucleus and alters gene expression are incompletely understood. Incubation of human umbilical vein endothelial cells (HUVEC) with TNF induces phosphorylation of the CRE-binding protein (CREB) transcription factor on serine 133 and increases CREB DNA binding and transactivation.
View Article and Find Full Text PDFPhosphatidylinositol (PI) 3-kinase/Akt signaling activates NF-kappa B through pleiotropic, cell type-specific mechanisms. This study investigated the significance of PI 3-kinase/Akt signaling to tumor necrosis factor (TNF)-induced NF-kappa B activation in transformed, immortalized, and primary cells. Pharmacological inhibition of PI 3-kinase blocked TNF-induced NF-kappa B DNA binding in the 293 line of embryonic kidney cells, partially affected binding in MCF-7 breast cancer cells, HeLa and ME-180 cervical carcinoma cells, and NIH 3T3 cells but was without significant effect in H1299 and human umbilical vein endothelial cells, cell types in which TNF activated Akt.
View Article and Find Full Text PDF