Bioaccumulation predictions can be substantially improved by combining in vitro metabolic rate measurements derived from rainbow trout hepatocytes and/or hepatic S9 fractions with quantitative structure-activity relationship (QSAR) modeling approaches. Compared with in vivo testing guidelines Organisation for Economic Co-operation and Development (OECD) 305 and Office of Chemical Safety and Pollution Prevention (OCSPP; an office of the US Environmental Protection Agency) 850.1730, the recently adopted OECD test guidelines 319A and 319B are in vitro approaches that have the potential to provide a time- and cost-efficient, humane solution, reducing animal use while addressing uncertainties in bioaccumulation across species.
View Article and Find Full Text PDFIn toxicology, standard sigmoidal concentration-response curves are used to predict effects concentrations and set chemical regulations. However, current literature also establishes the existence of complex, bimodal concentration-response curves, as is the case for arsenic toxicity. This bimodal response has been observed at the molecular level, but not characterized at the whole organism level.
View Article and Find Full Text PDFIncreased use of titanium dioxide (TiO ) nanoparticles (NPs) in domestic and industrial applications has increased the risk for adverse environmental outcomes based on an elevated likelihood of organism exposure. Anatase TiO NP exposure to ultraviolet A (UV-A) radiation in aquatic environments generates radical oxygen species (ROS), which may ultimately be responsible for increased organism toxicity. We have identified and measured the 2 most relevant ROS species, hydroxyl and superoxide radicals, and described that ROS can be modeled using the highly reactive hydroxyl radical to provide an upper bound for toxicity.
View Article and Find Full Text PDF