Publications by authors named "Jason A Bubier"

Opioid misuse, addiction, and associated overdose deaths remain global public health crises. Despite the tremendous need for pharmacological treatments, current options are limited in number, use, and effectiveness. Fundamental leaps forward in our understanding of the biology driving opioid addiction are needed to guide development of more effective medication-assisted therapies.

View Article and Find Full Text PDF

The ability of morphine to decrease cysteine transport into neurons by inhibition of excitatory amino acid transporter 3 (EAA3) may be a key molecular mechanism underlying the acquisition of physical and psychological dependence to morphine. This study examined whether co-administration of the cell-penetrant antioxidant D-thiol ester, D-cysteine ethyl ester (D-CYSee), with morphine, would diminish the development of physical dependence to morphine in male Sprague Dawley rats. Systemic administration of the opioid receptor antagonist, naloxone (NLX), elicited pronounced withdrawal signs (e.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a new treatment called sodium valerate that helps reduce heavy drinking in mice.
  • This treatment works by changing the gut bacteria and increasing GABA, a chemical that helps calm the brain.
  • Sodium valerate can lower alcohol consumption by 40% and also makes mice less anxious without affecting their eating or drinking of water.
View Article and Find Full Text PDF

We examined whether co-injections of the cell-permeant D-cysteine analogues, D-cysteine ethyl ester (D-CYSee) and D-cysteine ethyl amide (D-CYSea), prevent acquisition of physical dependence induced by twice-daily injections of fentanyl, and reverse acquired dependence to these injections in freely-moving male Sprague Dawley rats. Injection of the opioid receptor antagonist, naloxone HCl (NLX, 1.5 mg/kg, IV), elicited a series of withdrawal phenomena that included cardiorespiratory and behavioral responses, and falls in body weight and body temperature, in rats that received 5 or 10 injections of fentanyl (125 μg/kg, IV), and the same number of vehicle co-injections.

View Article and Find Full Text PDF

N-acetyl-L-cysteine (L-NAC) is a proposed therapeutic for opioid use disorder. This study determined whether co-injections of L-NAC (500 μmol/kg, IV) or its highly cell-penetrant analogue, L-NAC methyl ester (L-NACme, 500 μmol/kg, IV), prevent acquisition of acute physical dependence induced by twice-daily injections of fentanyl (125 μg/kg, IV), and overcome acquired dependence to these injections in freely-moving male Sprague Dawley rats. The injection of the opioid receptor antagonist, naloxone HCl (NLX; 1.

View Article and Find Full Text PDF

Substance use disorders are heritable disorders characterized by compulsive drug use, the biological mechanisms for which remain largely unknown. Genetic correlations reveal that predisposing drug-naïve phenotypes, including anxiety, depression, novelty preference and sensation seeking, are predictive of drug-use phenotypes, thereby implicating shared genetic mechanisms. High-throughput behavioral screening in knockout (KO) mice allows efficient discovery of the function of genes.

View Article and Find Full Text PDF

The molecular mechanisms underlying the acquisition of addiction/dependence on morphine may result from the ability of the opioid to diminish the transport of L-cysteine into neurons via inhibition of excitatory amino acid transporter 3 (EAA3). The objective of this study was to determine whether the co-administration of the cell-penetrant L-thiol ester, L-cysteine ethyl ester (L-CYSee), would reduce physical dependence on morphine in male Sprague Dawley rats. Injection of the opioid-receptor antagonist, naloxone HCl (NLX; 1.

View Article and Find Full Text PDF

Background: Despite serious health and social consequences, effective intervention strategies for habitual alcohol binge drinking are lacking. Development of novel therapeutic and preventative approaches is highly desirable. Accumulating evidence in the past several years has established associations between the gut microbiome and microbial metabolites with drinking behavior, but druggable targets and their underlying mechanism of action are understudied.

View Article and Find Full Text PDF

Substance use disorders (SUD), like many neuropsychiatric conditions, are a heterogeneous group of disorders with similar symptomatology but often different pathoetiology [...

View Article and Find Full Text PDF

Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq.

View Article and Find Full Text PDF

Substance use disorders (SUDs) are heritable disorders characterized by compulsive drug use, but the biological mechanisms driving addiction remain largely unknown. Genetic correlations reveal that predisposing drug-naïve phenotypes, including anxiety, depression, novelty preference, and sensation seeking, are predictive of drug-use phenotypes, implicating shared genetic mechanisms. Because of this relationship, high-throughput behavioral screening of predictive phenotypes in knockout (KO) mice allows efficient discovery of genes likely to be involved in drug use.

View Article and Find Full Text PDF

The Retinoid-related orphan receptor beta (RORβ) gene encodes a developmental transcription factor and has 2 predominant isoforms created through alternative first exon usage; one specific to the retina and another present more broadly in the central nervous system, particularly regions involved in sensory processing. RORβ belongs to the nuclear receptor family and plays important roles in cell fate specification in the retina and cortical layer formation. In mice, loss of RORβ causes disorganized retina layers, postnatal degeneration, and production of immature cone photoreceptors.

View Article and Find Full Text PDF

Brain transcriptional variation is a heritable trait that mediates complex behaviors, including addiction. Expression quantitative trait locus (eQTL) mapping reveals genomic regions harboring genetic variants that influence transcript abundance. In this study, we profiled transcript abundance in the striatum of 386 Diversity Outbred (J:DO) mice of both sexes using RNA-Seq.

View Article and Find Full Text PDF

The gut-brain axis is increasingly recognized as an important pathway involved in cocaine use disorder. Microbial products of the murine gut have been shown to affect striatal gene expression, and depletion of the microbiome by antibiotic treatment alters cocaine-induced behavioral sensitization in C57BL/6J male mice. Some reports suggest that cocaine-induced behavioral sensitization is correlated with drug self-administration behavior in mice.

View Article and Find Full Text PDF

The gut microbiome is thought to play a critical role in the onset and development of psychiatric disorders, including depression and substance use disorder (SUD). To test the hypothesis that the microbiome affects addiction predisposing behaviors and cocaine intravenous self-administration (IVSA) and to identify specific microbes involved in the relationship, we performed 16S rRNA gene sequencing on feces from 228 diversity outbred mice. Twelve open field measures, two light-dark assay measures, one hole board and novelty place preference measure significantly differed between mice that acquired cocaine IVSA (ACQ) and those that failed to acquire IVSA (FACQ).

View Article and Find Full Text PDF

Identifying the genetic determinants of pain is a scientific imperative given the magnitude of the global health burden that pain causes. Here, we report a genetic screen for nociception, performed under the auspices of the International Mouse Phenotyping Consortium. A biased set of 110 single-gene knockout mouse strains was screened for 1 or more nociception and hypersensitivity assays, including chemical nociception (formalin) and mechanical and thermal nociception (von Frey filaments and Hargreaves tests, respectively), with or without an inflammatory agent (complete Freund's adjuvant).

View Article and Find Full Text PDF

Background: Rodent paradigms and human genome-wide association studies (GWAS) on drug use have the potential to provide biological insight into the pathophysiology of addiction.

Methods: Using GeneWeaver, we created rodent alcohol and nicotine gene-sets derived from 19 gene expression studies on alcohol and nicotine outcomes. We partitioned the SNP heritability of these gene-sets using four large human GWAS: (1) alcoholic drinks per week, (2) problematic alcohol use, (3) cigarettes per day, and (4) smoking cessation.

View Article and Find Full Text PDF

The dysregulation of microRNA (miRNA) is implicated in cancer, inflammation, cardiovascular disorders, drug resistance, and aging. While most researchers study miRNA's role as a biomarker, for example, to distinguish between various sub-forms or stages of a given disease of interest, research is also ongoing to utilize these small nucleic acids as therapeutics. An example of a common pleiotropic disease that could benefit from miRNA-based therapeutics is inflammatory bowel disease (IBD), which is characterized by chronic inflammation of the small and large intestines.

View Article and Find Full Text PDF

Substance use disorders (SUDs) remain a significant public health challenge, affecting tens of millions of individuals worldwide each year. Often comorbid with other psychiatric disorders, SUD can be poly-drug and involve several different substances including cocaine, opiates, nicotine, and alcohol. SUD has a strong genetic component.

View Article and Find Full Text PDF

There is compelling evidence that sex and gender have crucial roles in excessive alcohol (ethanol) consumption. Here, we review some of the data from the perspective of brain transcriptional differences between males and females, focusing on rodent animal models. A key emerging transcriptional feature is the role of neuroimmune processes.

View Article and Find Full Text PDF

The gut microbiome plays a significant role in health and disease, and there is mounting evidence indicating that the microbial composition is regulated in part by host genetics. Heritability estimates for microbial abundance in mice and humans range from (0.05-0.

View Article and Find Full Text PDF

Cross-species translational approaches to human genomic analyses are lacking. The present study uses an integrative framework to investigate how genes associated with nicotine use in model organisms contribute to the genetic architecture of human tobacco consumption. First, we created a model organism geneset by collecting results from five animal models of nicotine exposure (RNA expression changes in brain) and then tested the relevance of these genes and flanking genetic variation using genetic data from human cigarettes per day (UK BioBank N = 123,844; all European Ancestry).

View Article and Find Full Text PDF

In the U.S., opioid prescription for treatment of pain nearly quadrupled from 1999 to 2014.

View Article and Find Full Text PDF

Genetic mechanisms underlying age-related cognitive decline and dementia remain poorly understood. Here, we take advantage of the Diversity Outbred mouse population to utilize quantitative trait loci mapping and identify Dlgap2 as a positional candidate responsible for modifying working memory decline. To evaluate the translational relevance of this finding, we utilize longitudinal cognitive measures from human patients, RNA expression from post-mortem brain tissue, data from a genome-wide association study (GWAS) of Alzheimer's dementia (AD), and GWAS results in African Americans.

View Article and Find Full Text PDF

Genome-wide association studies and other discovery genetics methods provide a means to identify previously unknown biological mechanisms underlying behavioral disorders that may point to new therapeutic avenues, augment diagnostic tools, and yield a deeper understanding of the biology of psychiatric conditions. Recent advances in psychiatric genetics have been made possible through large-scale collaborative efforts. These studies have begun to unearth many novel genetic variants associated with psychiatric disorders and behavioral traits in human populations.

View Article and Find Full Text PDF