Although BCL2 mutations are reported as later occurring events leading to venetoclax resistance, many other mechanisms of progression have been reported though remain poorly understood. Here, we analyze longitudinal tumor samples from 11 patients with disease progression while receiving venetoclax to characterize the clonal evolution of resistance. All patients tested showed increased in vitro resistance to venetoclax at the posttreatment time point.
View Article and Find Full Text PDFPI3Kδ inhibitors are approved for the therapy of B cell malignancies, but their clinical use has been limited by unpredictable autoimmune toxicity, despite promising efficacy and evidence that toxicity is associated with improved clinical outcomes. Prior phenotypic evaluation by CyTOF has identified increases in activated CD8 T cells with activation of Th17 T cells, as well as decreases in Tregs, particularly in patients with toxicity. Here we sought to further understand the effects of idelalisib and duvelisib in vitro, and demonstrate that both idelalisib and duvelisib can inhibit T cell proliferation as well as Th1 and Treg differentiation in vitro, while promoting Th2 and Th17 differentiation.
View Article and Find Full Text PDFCellular therapies offer a promising therapeutic strategy for the highly malignant brain tumor, glioblastoma (GBM). However, their clinical translation is limited by the lack of effective target identification and stringent testing in pre-clinical models that replicate standard treatment in GBM patients. In this study, we show the detection of cell surface death receptor (DR) target on CD146-enriched circulating tumor cells (CTC) captured from the blood of mice bearing GBM and patients diagnosed with GBM.
View Article and Find Full Text PDFImmunotherapy for brain tumors remains elusive, unlike many other cancer types for which it is one of the most promising therapeutic options. Recent studies have comprehensively profiled the immune-landscape of the highly malignant brain tumor, glioblastoma (GBM) in patients and identified novel immune-modulatory targets. However, given that pre-clinical exploration of potential novel therapeutics is primarily performed in immune-competent mice, it is vital to compare the immune-profiling data obtained from syngeneic mouse GBM models with GBM patient samples.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic has grown to be a global public health crisis with no safe and effective treatments available yet. Recent findings suggest that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the coronavirus pathogen that causes COVID-19, could elicit a cytokine storm that drives edema, dysfunction of the airway exchange, and acute respiratory distress syndrome in the lung, followed by acute cardiac injury and thromboembolic events leading to multiorgan failure and death. Mesenchymal stem cells (MSCs), owing to their powerful immunomodulatory abilities, have the potential to attenuate the cytokine storm and have therefore been proposed as a potential therapeutic approach for which several clinical trials are underway.
View Article and Find Full Text PDFImmunotherapy has emerged as a promising approach to treat cancer, however, its efficacy in highly malignant brain-tumors, glioblastomas (GBM), is limited. Here, we generate distinct imageable syngeneic mouse GBM-tumor models and utilize RNA-sequencing, CyTOF and correlative immunohistochemistry to assess immune-profiles in these models. We identify immunologically-inert and -active syngeneic-tumor types and show that inert tumors have an immune-suppressive phenotype with numerous exhausted CD8 T cells and resident macrophages; fewer eosinophils and SiglecF+ macrophages.
View Article and Find Full Text PDFTumor interferon (IFN) signaling promotes PD-L1 expression to suppress T cell-mediated immunosurveillance. We identify the IFN-stimulated non-coding RNA 1 (INCR1) as a long noncoding RNA (lncRNA) transcribed from the PD-L1 locus and show that INCR1 controls IFNγ signaling in multiple tumor types. Silencing INCR1 decreases the expression of PD-L1, JAK2, and several other IFNγ-stimulated genes.
View Article and Find Full Text PDFActivated T-cells make both interleukin-2 (IL2) and its high-affinity receptor component CD25. Regulatory CD4 T-cells (Treg cells) do not make IL2, and the IL2-CD25 circuit is considered a paracrine circuit crucial in their generation and maintenance. Yet, all T-cells are capable of making IL2 at some stage during differentiation, making a cell-intrinsic autocrine circuit additionally possible.
View Article and Find Full Text PDFActivation of B and T lymphocytes leads to major remodelling of the metabolic landscape of the cells enabling their post-activation functions. However, naive B and T lymphocytes also show metabolic differences, and the genesis, nature and functional significance of these differences are not yet well understood. Here we show that resting B-cells appeared to have lower energy demands than resting T-cells as they consumed lower levels of glucose and fatty acids and produced less ATP.
View Article and Find Full Text PDFDespite tumor resection being the first-line clinical care for glioblastoma (GBM) patients, nearly all preclinical immune therapy models intend to treat established GBM. Characterizing cytoreductive surgery-induced immune response combined with the administration of immune cytokines has the potential of offering a new treatment paradigm of immune therapy for GBMs. We developed syngeneic orthotopic mouse GBM models of tumor resection and characterized the immune response of intact and resected tumors.
View Article and Find Full Text PDFT cell response magnitudes increase with increasing antigenic dosage. However, it is unclear whether ligand density only modulates the proportions of responding ligand-specific T cells or also alters responses at the single cell level. Using brief (3 h) exposure of TCR-transgenic mouse CD8 T cells in vitro to varying densities of cognate peptide-MHC ligand followed by ligand-free culture in IL-2, we found that ligand density determined the frequencies of responding cells but not the expression levels of the early activation marker molecule, CD69.
View Article and Find Full Text PDFPosttranslational modifications (PTMs) can alter many fundamental properties of a protein. One or combinations of them have been known to regulate the dynamics of many cellular pathways and consequently regulate all vital processes. Understandably, pathogens have evolved sophisticated strategies to subvert these mechanisms to achieve instantaneous control over host functions.
View Article and Find Full Text PDFAmyloids are highly organized protein aggregates that arise from inappropriately folded versions of proteins or polypeptides under both physiological as well as simulated ambiences. Once thought to be irreversible assemblies, amyloids have begun to expose their more dynamic and reversible attributes depending upon the intrinsic properties of the precursor protein/peptide and experimental conditions such as temperature, pressure, structural modifications in proteins, or presence of chemicals in the reaction mixture. It has been repeatedly proposed that amyloids undergo transformation to the bioactive peptide/protein forms under specific conditions.
View Article and Find Full Text PDFMultiple checkpoints regulating finely balanced death-versus-survival decisions characterize both thymic development and peripheral homeostasis of T lymphocytes. While exploring the mechanisms of T cell death involved at various stages during the life of a T cell, we have observed and reported a variety of non-redundant roles for apoptosis inducing factor (Aif), a mitochondrial flavoprotein. Aif is ubiquitously expressed in all cell lineages and functions as an NADH oxidase in its mitochondrial location.
View Article and Find Full Text PDFApoptosis-inducing factor (Aif) is a mitochondrial flavoprotein that regulates cell metabolism and survival in many tissues. We report that aif-hypomorphic harlequin (Hq) mice show thymic hypocellularity and a cell-autonomous thymocyte developmental block associated with apoptosis at the β-selection stage, independent of T cell receptor β recombination. No abnormalities are observed in the B cell lineage.
View Article and Find Full Text PDF