Due to their susceptibility to bacterial biofilm formation, commercial tubes for medical use are one of the main sources of hospital infections with Acinetobacter baumannii. The anti-biofouling activity of novel composites against the clinical isolate of the multi-drug resistant A. baumannii is reported here.
View Article and Find Full Text PDFPolyurethane copolymers based on α,ω-dihydroxypropyl poly(dimethylsiloxane) (PDMS) with a range of soft segment contents were prepared by two-stage polymerization, and their microstructures, thermal, thermomechanical, and surface properties, as well as in vitro hemo- and cytocompatibility were evaluated. All utilized characterization methods confirmed the existence of moderately microphase separated structures with the appearance of some microphase mixing between segments as the PDMS (i.e.
View Article and Find Full Text PDFProperties and biocompatibility of a series of thermoplastic poly(urethane-siloxane)s (TPUSs) based on α,ω-dihydroxy ethoxy propyl poly(dimethylsiloxane) (PDMS) for potential biomedical application were studied. Thin films of TPUSs with a different PDMS soft segment content were characterized by (1) H NMR, quantitative (13) C NMR, Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), contact angle, and water absorption measurements. Different techniques (FTIR, AFM, and DMA) showed that decrease of PDMS content promotes microphase separation in TPUSs.
View Article and Find Full Text PDFPoly(ε-caprolactone) (PCL), a biodegradable and biocompatible aliphatic polyester has a great potential as a drug carrying material in controlled drug delivery/release systems. The most simple and economical way to tailor the release profile of active substances from biodegradable polymer matrix is by the addition of the second polymeric component in the polymer matrix, i.e.
View Article and Find Full Text PDFNovel polyurethane co-polymers (TPUs), based on poly(ϵ-caprolactone)-block-poly(dimethylsiloxane)-block-poly(ϵ-caprolactone) (PCL-PDMS-PCL) as soft segment and 4,4'-methylenediphenyl diisocyanate (MDI) and 1,4-butanediol (BD) as hard segment, were synthesized and evaluated for biomedical applications. The content of hard segments (HS) in the polymer chains was varied from 9 to 63 wt%. The influence of the content and length of the HS on the thermal, surface, mechanical properties and biocompatibility was investigated.
View Article and Find Full Text PDFThe subject of this study was the development of flavour alginate formulationsaimed for thermally processed foods. Ethyl vanilline was used as the model flavourcompound. Electrostatic extrusion was applied for the encapsulation of ethyl vanilline inalginate gel microbeads.
View Article and Find Full Text PDF