Publications by authors named "Jasna Curak"

Article Synopsis
  • Oncogenic mutations like KRAS significantly alter protein-protein interaction networks (PPINs), particularly affecting the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells.
  • Research shows that over 6000 interactions are modified in cells with KRAS mutations, influenced by factors such as protein expression changes and phosphorylation.
  • These alterations in PPIN structure impact protein complexes, signal flow, and gene regulation, and are linked to poor patient prognosis in CRC due to frequent genetic changes in key network components.
View Article and Find Full Text PDF

Purpose: The purpose of this study was to revise the clinical use of commercial BMP2 (Infuse) and BMP7 (Osigraft) based bone devices and explore the mechanism of action and efficacy of low BMP6 doses in a novel whole blood biocompatible device OSTEOGROW.

Methods: Complications from the clinical use of BMP2 and BMP7 have been systemically reviewed in light of their role in bone remodeling. BMP6 function has been assessed in Bmp6-/- mice by μCT and skeletal histology, and has also been examined in mesenchymal stem cells (MSC), hematopoietic stem cells (HSC) and osteoclasts.

View Article and Find Full Text PDF

P-glycoprotein (P-gp, MDR1) is a promiscuous drug efflux pump of substantial pharmacological importance. Taking advantage of large-scale cytotoxicity screening data involving 60 cancer cell lines, we correlated the differential biological activities of ∼13,000 compounds against cellular P-gp levels. We created a large set of 934 high-confidence P-gp substrates or nonsubstrates by enforcing agreement with an orthogonal criterion involving P-gp overexpressing ADR-RES cells.

View Article and Find Full Text PDF

The pentaspan membrane glycoprotein CD133 marks lineage-specific cancer progenitor cells and is associated with poor prognosis in a number of tumor types. Despite its utility as a cancer progenitor cell marker, CD133 protein regulation and molecular function remain poorly understood. We find that the deacetylase HDAC6 physically associates with CD133 to negatively regulate CD133 trafficking down the endosomal-lysosomal pathway for degradation.

View Article and Find Full Text PDF

Resistance to widely used fungistatic drugs, particularly to the ergosterol biosynthesis inhibitor fluconazole, threatens millions of immunocompromised patients susceptible to invasive fungal infections. The dense network structure of synthetic lethal genetic interactions in yeast suggests that combinatorial network inhibition may afford increased drug efficacy and specificity. We carried out systematic screens with a bioactive library enriched for off-patent drugs to identify compounds that potentiate fluconazole action in pathogenic Candida and Cryptococcus strains and the model yeast Saccharomyces.

View Article and Find Full Text PDF

The biological function of proteins may be predicted by identification of their interacting partners, and one of the major goals of the postgenomic era is the mapping of protein interaction networks. Membrane proteins are of particular interest because of their role in disease and because of their prevalence as major pharmaceutical targets. Unfortunately, because of their hydrophobic nature, they have long been difficult to study in a high-throughput format.

View Article and Find Full Text PDF

The fundamental biological and clinical importance of integral membrane proteins prompted the development of a yeast-based system for the high-throughput identification of protein-protein interactions (PPI) for full-length transmembrane proteins. To this end, our lab developed the split-ubiquitin based Membrane Yeast Two-Hybrid (MYTH) system. This technology allows for the sensitive detection of transient and stable protein interactions using Saccharomyces cerevisiae as a host organism.

View Article and Find Full Text PDF

Binding of epidermal growth factor (EGF) to its receptor leads to receptor dimerization, assembly of protein complexes, and activation of signaling networks that control key cellular responses. Despite their fundamental role in cell biology, little is known about protein complexes associated with the EGF receptor (EGFR) before growth factor stimulation. We used a modified membrane yeast two-hybrid system together with bioinformatics to identify 87 candidate proteins interacting with the ligand-unoccupied EGFR.

View Article and Find Full Text PDF

Many bacterial pathogens rely on effector proteins to disrupt conserved eukaryotic processes. Despite their fundamental biological importance, it has been difficult to elucidate their mode-of-action using standard bioinformatic, biochemical, or genetic approaches. In recent years, surrogate hosts including the budding yeast Saccharomyces cerevisiae have become increasingly popular to aid the study of effectors.

View Article and Find Full Text PDF

Pseudomonas aeruginosa is an opportunistic human pathogen that is a key factor in the mortality of cystic fibrosis patients, and infection represents an increased threat for human health worldwide. Because resistance of Pseudomonas aeruginosa to antibiotics is increasing, new inhibitors of pharmacologically validated targets of this bacterium are needed. Here we demonstrate that a cell-based yeast phenotypic assay, combined with a large-scale inhibitor screen, identified small molecule inhibitors that can suppress the toxicity caused by heterologous expression of selected Pseudomonas aeruginosa ORFs.

View Article and Find Full Text PDF