Even though various techniques have been developed thus far for targeted delivery of therapeutics, design and fabrication of cancer biomarker-triggered disintegrable nanogels, which are exclusively composed of nucleic acid macromolecules, are still challenging nowadays. Here, we describe for the first time our creation of intelligent DNA nanogels whose backbones are sorely disintegrable by flap endonuclease 1 (FEN1), an enzymatic biomarker that is highly overexpressed in most cancer cells but not in their normal counterparts. It is the catalytic actions of intracellular FEN1 on bifurcated DNA structures that lead to the cancer-specific disintegration of our DNA nanogels and controlled release of drugs in target cancer cells.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
As an essential DNA repair enzyme, apurinic/apyrimidinic endonuclease 1 (APE1) is overexpressed in most human cancers and is identified as a cancer diagnostic and predictive biomarker for cancer risk assessment, diagnosis, prognosis, and prediction of treatment efficacy. Despite its importance in cancer, however, it is still a significant challenge nowadays to sense abundance variation and monitor enzymatic activity of this biomarker in living cells. Here, we report our construction of biocompatible functional nanocomposites, which are a combination of meticulously designed unimolecular DNA and fine-sized graphene quantum dots.
View Article and Find Full Text PDFFlap structure-specific endonuclease 1 (FEN1) is overexpressed in various types of human cancer cells and has been recognized as a promising biomarker for cancer diagnosis in the recent years. In order to specifically detect the abundance and activity of this cancer-overexpressed enzyme, different types of DNA-based nanodevices were created during our investigations. It is shown in our studies that these newly designed biosensors are highly sensitive and specific for FEN1 in living cells as well as in cell-free systems.
View Article and Find Full Text PDFFlap structure-specific endonuclease 1 (FEN1) is one of the enzymes that involve in Eukaryotic DNA replication and repair. Recent studies have proved that FEN1 is highly over-expressed in various types of cancer cells and is a drug target. However, a limited number of FEN1 inhibitors has been identified and approved.
View Article and Find Full Text PDFEnrichment of omega-3 fatty acids in cod liver oil via alternate operation of solvent winterization and enzymatic interesterification was attempted. Variables including separation method, solvent, oil concentration, time and temperature were optimized for the winterization. Meanwhile, Novozyme 435, Lipozyme RM IM and Lipozyme TL IM were screened for interesterification efficiency under different system air condition, time and temperature.
View Article and Find Full Text PDFUnlike chemical damages on DNA, physical alterations of B-form of DNA occur commonly in organisms that serve as signals for specified cellular events. Although the modes of action for repairing of chemically damaged DNA have been well studied nowadays, the repairing mechanisms for physically altered DNA structures have not yet been understood. Our current in vitro studies show that both breakdown of stable non-B DNA structures and resumption of canonical B-conformation of DNA can take place during the courses of isothermal helicase-dependent amplification (HDA).
View Article and Find Full Text PDFChem Commun (Camb)
September 2014
It is demonstrated that positive supercoiling affiliated with nucleosome formation can act as the driving force to repair the G-quadruplex, cruciform as well as a stable non-B DNA structure caused by peptide nucleic acid.
View Article and Find Full Text PDFIt is demonstrated that the prokaryote-exclusively-owned DNA gyrase is capable of facilitating the generation of a G-quadruplex from a long perfectly matched duplex DNA at physiological concentrations of cations.
View Article and Find Full Text PDFIt was demonstrated in our studies that norfloxacin, a representative member of quinolone antibiotics, can indeed stabilize the gyrase-DNA complex formed during enzymatic cycle. In addition, the formation of the drug-induced complex has been firstly visualized through our atomic force microscopic examination.
View Article and Find Full Text PDFIt has been demonstrated in our studies that the intrinsic curvature of DNA can be easily interrupted by low concentrations of chloroquine and ethidium bromide. In addition, the changes of DNA curvature caused by varying the concentration of these two DNA intercalators can be readily verified through using an atomic force microscope.
View Article and Find Full Text PDF