We show that the same QCD formalism that accounts for the suppression of high-p_{T} hadron and jet spectra in heavy-ion collisions predicts medium-enhanced production of cc[over ¯] pairs in jets. We demonstrate that this phenomenon, which cannot be accessed by traditional jet-quenching observables, can be directly observed using D^{0}D[over ¯]^{0}-tagged jets in nuclear collisions.
View Article and Find Full Text PDFWe introduce a new "quantile" analysis strategy to study the modification of jets as they traverse through a droplet of quark-gluon plasma. To date, most jet modification studies have been based on comparing the jet properties measured in heavy-ion collisions to a proton-proton baseline at the same reconstructed jet transverse momentum (p_{T}). It is well known, however, that the quenching of jets from their interaction with the medium leads to a migration of jets from higher to lower p_{T}, making it challenging to directly infer the degree and mechanism of jet energy loss.
View Article and Find Full Text PDFMany strongly coupled fluids are known to share similar hydrodynamic transport properties. In this work we argue that this similarity could extend beyond hydrodynamics to transient dynamics through the presence of nonhydrodynamic modes. We review nonhydrodynamic modes in kinetic theory and gauge-gravity duality and discuss their signatures in trapped Fermi gases close to unitarity.
View Article and Find Full Text PDF