The emergence of long-range (LoRa) technology, together with the expansion of uncrewed aerial vehicles (UAVs) use in civil applications have brought significant advances to the Internet of Things (IoT) field. In this way, these technologies are used together in different scenarios, especially when it is necessary to have connectivity in remote and difficult-to-access locations, providing coverage and monitoring of greater areas. In this sense, this article seeks to determine the best positioning for the LoRa gateway coupled to the drone and the optimal spreading factor (SF) for signal transmission in a LoRa network, aiming to improve the connected devices (SNR), considering a suburban and densely wooded environment.
View Article and Find Full Text PDFThe presence of green areas in urbanized cities is crucial to reduce the negative impacts of urbanization. However, these areas can influence the signal quality of IoT devices that use wireless communication, such as LoRa technology. Vegetation attenuates electromagnetic waves, interfering with the data transmission between IoT devices, resulting in the need for signal propagation modeling, which considers the effect of vegetation on its propagation.
View Article and Find Full Text PDFDesigning and deploying telecommunications and broadcasting networks in the challenging terrain of the Amazon region pose significant obstacles due to its unique morphological characteristics. Within low-power wide-area networks (LPWANs), this research study introduces a comprehensive approach to modeling large-scale propagation loss channels specific to the LoRaWAN protocol operating at 915 MHz. The objective of this study is to facilitate the planning of Internet of Things (IoT) networks in riverside communities while accounting for the mobility of end nodes.
View Article and Find Full Text PDFThis paper aims to provide a metaheuristic approach to drone array optimization applied to coverage area maximization of wireless communication systems, with unmanned aerial vehicle (UAV) base stations, in the context of suburban, lightly to densely wooded environments present in cities of the Amazon region. For this purpose, a low-power wireless area network (LPWAN) was analyzed and applied. LPWAN are systems designed to work with low data rates but keep, or even enhance, the extensive area coverage provided by high-powered networks.
View Article and Find Full Text PDFOne of the key technologies in smart cities is the use of next generation networks such as 5G networks. Mainly because this new mobile technology offers massive connections in densely populated areas in smart cities, thus playing a crucial role for numerous subscribers anytime and anywhere. Indeed, all the most important infrastructure to promote a connected world is being related to next generation networks.
View Article and Find Full Text PDFSociety is increasingly connected, utilizing more data that demands greater capacity and better channel quality. Furthermore, wireless networks are being inserted into the population's daily lives. Therefore, solutions capable of transferring a high volume of data are increasingly needed.
View Article and Find Full Text PDFThe Internet of Things (IoT) device scenario has several emerging technologies. Among them, Low-Power Wide-Area Networks (LPWANs) have proven to be efficient connections for smart devices. These devices communicate through gateways that exchange points with the central server.
View Article and Find Full Text PDFThe 5G deployment brings forth the usage of Unmanned Aerial Vehicles (UAV) to assist wireless networks by providing improved signal coverage, acting as relays or base-stations. Another technology that could help achieve 5G massive machine-type communications (mMtc) goals is the Long Range Wide-Area Network (LoRaWAN) communication protocol. This paper studied these complementary technologies, LoRa and UAV, through measurement campaigns in suburban, densely forested environments.
View Article and Find Full Text PDF