Even though electromagnetic fields have been reported to assist endogenous neurogenesis, little is known about the exact mechanisms of their action. In this pilot study, we investigated the effects of pulsating extremely low-frequency electromagnetic fields on neural stem cell differentiation towards specific phenotypes, such as neurons and astrocytes. Neural stem cells isolated from the telencephalic wall of B6(Cg)-Tyrc-2J/J mouse embryos (E14.
View Article and Find Full Text PDFThe human body consists of diverse subcellular, cellular and supracellular structures. Neurons possess varying-sized projections that interact with different cellular structures leading to the development of highly complex morphologies. Aiming to enhance image analysis of complex biological forms including neurons using available FIJI (ImageJ) plugins, Lusca, an advanced open-source tool, was developed.
View Article and Find Full Text PDFPerinatal brain damage, one of the most common causes of lifelong impairment, is predominantly caused by a lack of oxygen and glucose during early development. These conditions, in turn, affect cells of the nervous tissue through various stages of their maturation. To quantify the influence of these factors on cell differentiation and mitochondrial parameters, we exposed neural cell precursors to oxygen and glucose deprivation (OGD) during three stages of their differentiation: day 1, day 7, and day 14 (D1, D7, and D14, respectively).
View Article and Find Full Text PDFFront Bioeng Biotechnol
February 2023
Despite several decades of research on the nature and functional properties of neural stem cells, which brought great advances in regenerative medicine, there is still a plethora of ambiguous protocols and interpretations linked to their applications. Here, we present a whole spectrum of protocol elements that should be standardized in order to obtain viable cell cultures and facilitate their translation into clinical settings. Additionally, this review also presents outstanding limitations and possible problems to be encountered when dealing with protocol optimization.
View Article and Find Full Text PDFNeural tube defects (NTDs) are the second most common congenital malformations of humans, characterized by impaired development of the central nervous system. Even though the etiology of most birth defects remains undetermined, genetic and environmental risk factors in the background of NTDs have been identified and extensively reported. On top of genetic and nutritional risks which include mutations in both coding and non-coding regions and maternal folate status, respectively, recent years have seen a rise in the identification of a variety of teratogens that could be implicated in NTD development.
View Article and Find Full Text PDFOzone (O) is a short-lived molecule which can be produced in a controlled reaction when oxygen is exposed to electric discharge. In the last few decades, many publications dealing both with animals and humans reported beneficial effects of ozone administration linked to its immunomodulatory and protective role against cellular damage. This is the first work which brings insight into how ozone influences cells of neural lineage in vitro and hypothesizes the potential molecular and novel electromagnetic mechanisms behind its action.
View Article and Find Full Text PDFBrain white matter is the means of efficient signal propagation in brain and its dysfunction is associated with many neurological disorders. We studied the effect of hyaluronan deficiency on the integrity of myelin in murine corpus callosum. Conditional knockout mice lacking the hyaluronan synthase 2 were compared with control mice.
View Article and Find Full Text PDFAim: To propose potential mechanisms of action of electromagnetic fields (EMF) on astrocytes and microglia and to elucidate the role of heat shock proteins (HSP), adenosine triphosphate (ATP), calcium ions (Ca2+), and hypoxia-inducible factor 1α (HIF1α) in neurorestoration following the application of EMF.
Methods: We reviewed the existing studies within the public domain and cross-evaluated their results in order to conclude on the molecular mechanisms of microglia-astrocyte crosstalk at work during EMF treatment.
Results: The existing studies suggest that EMF induces the increase of HSP70 expression and inhibition of HIF1α, thus decreasing inflammation and allowing the microglia-astrocyte crosstalk to initiate the formation of a glial scar within the central nervous system.
All major processes in the nervous system depend on interactions between cells and nerve fibers. In this work we present a novel model of inhomogeneous electromagnetic fields originating from nerve fibers and delineate their influence on cells. By expanding Hodgkin-Huxley's applied current into axial current, governed by[Formula: see text], we reveal that cell-with-neuron interactions are regulated by the strength of the electromagnetic fields, which are homogeneous up to 2.
View Article and Find Full Text PDF