Flexible and stretchable strain sensors are an important development for measuring various movements and forces and are increasingly used in a wide range of smart textiles. For example, strain sensors can be used to measure the movements of arms, legs or individual joints. Thereby, most strain sensors are capable of detecting large movements with a high sensitivity.
View Article and Find Full Text PDFA family of dinuclear complexes based on 2,7-disubstituted 1,8-naphthalenediol-ligands has been designed to bind covalently to two neighboring phosphate diester groups in the backbone of DNA. The dinuclear Cu and Ni complexes bind to DNA resulting in the inhibition of DNA synthesis in PCR experiments and in a cytotoxicity that is stronger for human cancer cells than for human stem cells of the same proliferation rate. These experiments support but cannot prove that the dinuclear complexes bind as intended to two neighboring phosphate ester groups of the DNA backbone.
View Article and Find Full Text PDFWe have rationally designed a family of dinuclear transition-metal complexes to bind two neighboring phosphate diester groups of DNA. The two metal ions are positioned at the distance of two neighboring phosphate diesters in DNA of 6-7 Å by a 1,8-naphthalenediol backbone. Two sterically demanding dipicolylamine pendant arms in the 2 and 7 positions stabilize coordination of the metal ions and prevent coordination to the less exposed nucleobases of DNA.
View Article and Find Full Text PDFA series of ten heteroleptic and homoleptic mononuclear Zr(iv) and Hf(iv) complexes bearing differently substituted phenoxy-benzoxazole ligands was synthesised. The complexes were characterised by 1H and 13C{1H} NMR spectroscopy as well as by elemental analyses and X-ray diffraction experiments. The molecular structures show octahedral or tetragonal-antiprismatic coordination motifs at the metal atom.
View Article and Find Full Text PDFThe amide moiety of peptides can be replaced for example by a triazole moiety, which is considered to be bioisosteric. Therefore, the carbonyl moiety of an amino acid has to be replaced by an alkyne in order to provide a precursor of such peptidomimetics. As most amino acids have a chiral center at C, such amide bond surrogates need a chiral moiety.
View Article and Find Full Text PDF