In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF) transcription factors and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitors. Although members of these two protein families are major developmental regulators, the transcriptional regulation of the genes encoding them has not been well explored.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2010
Like animals, the mature plant body develops via successive sets of instructions that determine cell fate, patterning, and organogenesis. In the coordination of various developmental programs, several plant hormones play decisive roles, among which auxin is the best-documented hormonal signal. Despite the broad range of processes influenced by auxin, how such a single signaling molecule can be translated into a multitude of distinct responses remains unclear.
View Article and Find Full Text PDFThe basic body plan of the adult plant is established during embryogenesis, resulting in the juvenile form of the seedling. Arabidopsis embryogenesis is distinguished by a highly regular pattern of cell divisions. Some of these divisions are asymmetric, generating daughter cells with different fates.
View Article and Find Full Text PDFThe Arabidopsis embryonic root meristem is initiated by the specification of a single cell, the hypophysis. This event critically requires the antagonistic auxin response regulators MONOPTEROS and BODENLOS, but their mechanism of action is unknown. We show that these proteins interact and transiently act in a small subdomain of the proembryo adjacent to the future hypophysis.
View Article and Find Full Text PDFThe plant hormone auxin has been implicated in virtually every aspect of plant growth and development. Auxin acts by promoting the degradation of transcriptional regulators called Aux/IAA proteins. Aux/IAA degradation requires TIR1, an F box protein that has been shown to function as an auxin receptor.
View Article and Find Full Text PDF