Publications by authors named "Jasmin Mathew"

Key Points: Parkin, an E3 ubiquitin ligase encoded by the Park2 gene, has been implicated in the regulation of mitophagy, a quality control process in which defective mitochondria are degraded. The exact physiological significance of Parkin in regulating mitochondrial function and contractility in skeletal muscle remains largely unexplored. Using Park2 mice, we show that Parkin ablation causes a decrease in muscle specific force, a severe decrease in mitochondrial respiration, mitochondrial uncoupling and an increased susceptibility to opening of the permeability transition pore.

View Article and Find Full Text PDF

As differentiated cells, hepatocytes primarily metabolize glucose for ATP production through oxidative phosphorylation of glycolytic pyruvate, whereas proliferative hepatocellular carcinoma (HCC) cells undergo a metabolic shift to aerobic glycolysis despite oxygen availability. Keratins, the intermediate filament (IF) proteins of epithelial cells, are expressed as pairs in a lineage/differentiation manner. Hepatocyte and HCC (hepatoma) cell IFs are made solely of keratins 8/18 (K8/K18), thus providing models of choice to address K8/K18 IF functions in normal and cancerous epithelial cells.

View Article and Find Full Text PDF

Keratins (Ks), the intermediate filament (IF) proteins of epithelia, constitute at least 20 cytoskeletal proteins subdivided into type I (K9-20) and type II (K1-K8) and expressed as type I/type II pairs in a cell differentiation manner. Hepatocyte IFs are made only of K8/K18, the hallmark of simple epithelial cells. We have shown previously that a K8/K18 loss leads to a modulation of apoptosis in Fas-stimulated mouse hepatocytes.

View Article and Find Full Text PDF

New roles have emerged recently for intermediate filaments (IFs), namely in modulating cell adhesion and growth, and providing resistance to various forms of stress and to apoptosis. In this context, we first summarize findings on the IF association with the cell response to mechanical stress and growth stimulation, in light of growth-related signaling events that are relevant to death-receptor engagement. We then address the molecular mechanisms by which IFs can provide cell resistance to apoptosis initiated by death-receptor stimulation and to necrosis triggered by excessive oxidative stress.

View Article and Find Full Text PDF